Hubbry Logo
search button
Sign in
M6 (cipher)
M6 (cipher)
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
M6 (cipher)
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the M6 (cipher) Wikipedia article. Here, you can discuss, collect, and organize anything related to M6 (cipher). The purpose of the hub is to connect people, f...
Add your contribution
M6 (cipher)
M6
General
DesignersHitachi
First published1997
SuccessorsM8
Cipher detail
Key sizes40–64 bits
Block sizes64 bits
StructureFeistel network
Rounds10
Best public cryptanalysis
Mod n cryptanalysis: 1 known plaintext allows recovering the key with about 235 trial encryptions; "a few dozen" known plaintexts reduces this to about 231

In cryptography, M6 is a block cipher proposed by Hitachi in 1997 for use in the IEEE 1394 FireWire standard. The design allows some freedom in choosing a few of the cipher's operations, so M6 is considered a family of ciphers. Due to export controls, M6 has not been fully published; nevertheless, a partial description of the algorithm based on a draft standard is given by Kelsey, et al. in their cryptanalysis of this family of ciphers.[1]

The algorithm operates on blocks of 64 bits using a 10-round Feistel network structure. The key size is 40 bits by default, but can be up to 64 bits. The key schedule is very simple, producing two 32-bit subkeys: the high 32 bits of the key, and the sum mod 232 of this and the low 32 bits.

Because its round function is based on rotation and addition, M6 was one of the first ciphers attacked by mod n cryptanalysis.[1] Mod 5, about 100 known plaintexts suffice to distinguish the output from a pseudorandom permutation. Mod 257, information about the secret key itself is revealed. One known plaintext reduces the complexity of a brute force attack to about 235 trial encryptions; "a few dozen" known plaintexts lowers this number to about 231. Due to its simple key schedule, M6 is also vulnerable to a slide attack, which requires more known plaintext but less computation.

References

[edit]
  1. ^ a b John Kelsey, Bruce Schneier, David Wagner (March 1999). Mod n Cryptanalysis, with Applications Against RC5P and M6 (PDF/PostScript). 6th International Workshop on Fast Software Encryption (FSE '99). Rome: Springer-Verlag. pp. 139–155. Retrieved 25 January 2007.{{cite conference}}: CS1 maint: multiple names: authors list (link)