Hubbry Logo
search button
Sign in
Quantum jump method
Quantum jump method
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Quantum jump method
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Quantum jump method Wikipedia article. Here, you can discuss, collect, and organize anything related to Quantum jump method. The purpose of the hub is to c...
Add your contribution
Quantum jump method

The quantum jump method, also known as the Monte Carlo wave function (MCWF) is a technique in computational physics used for simulating open quantum systems and quantum dissipation. The quantum jump method was developed by Dalibard, Castin and Mølmer at a similar time to the similar method known as Quantum Trajectory Theory developed by Carmichael. Other contemporaneous works on wave-function-based Monte Carlo approaches to open quantum systems include those of Dum, Zoller and Ritsch and Hegerfeldt and Wilser.[1][2]

Method

[edit]
An example of the quantum jump method being used to approximate the density matrix of a two-level atom undergoing damped Rabi oscillations. The random jumps can clearly be seen in the top subplot, and the bottom subplot compares the fully simulated density matrix to the approximation obtained using the quantum jump method.
Animation of the Monte Carlo prediction (blue) for the population of a coherently-driven, damped two-level system as more trajectories are added to the ensemble average, compared to the master equation prediction (red).

The quantum jump method is an approach which is much like the master-equation treatment except that it operates on the wave function rather than using a density matrix approach. The main component of this method is evolving the system's wave function in time with a pseudo-Hamiltonian; where at each time step, a quantum jump (discontinuous change) may take place with some probability. The calculated system state as a function of time is known as a quantum trajectory, and the desired density matrix as a function of time may be calculated by averaging over many simulated trajectories. For a Hilbert space of dimension N, the number of wave function components is equal to N while the number of density matrix components is equal to N2. Consequently, for certain problems the quantum jump method offers a performance advantage over direct master-equation approaches.[1]


References

[edit]
  1. ^ a b Mølmer, K.; Castin, Y.; Dalibard, J. (1993). "Monte Carlo wave-function method in quantum optics". Journal of the Optical Society of America B. 10 (3): 524. Bibcode:1993JOSAB..10..524M. doi:10.1364/JOSAB.10.000524.
  2. ^ The associated primary sources are, respectively:

Further reading

[edit]
[edit]