Hubbry Logo
Traffic equationsTraffic equationsMain
Open search
Traffic equations
Community hub
Traffic equations
logo
7 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
Traffic equations
from Wikipedia

In queueing theory, a discipline within the mathematical theory of probability, traffic equations are equations that describe the mean arrival rate of traffic, allowing the arrival rates at individual nodes to be determined. Mitrani notes "if the network is stable, the traffic equations are valid and can be solved."[1]: 125 

Jackson network

[edit]

In a Jackson network, the mean arrival rate at each node i in the network is given by the sum of external arrivals (that is, arrivals from outside the network directly placed onto node i, if any), and internal arrivals from each of the other nodes on the network. If external arrivals at node i have rate , and the routing matrix[2] is P, the traffic equations are,[3] (for i = 1, 2, ..., m)

This can be written in matrix form as

and there is a unique solution of unknowns to this equation, so the mean arrival rates at each of the nodes can be determined given knowledge of the external arrival rates and the matrix P. The matrix I − P is surely non-singular as otherwise in the long run the network would become empty.[1]

Gordon–Newell network

[edit]

In a Gordon–Newell network there are no external arrivals, so the traffic equations take the form (for i = 1, 2, ..., m)

Notes

[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
Add your contribution
Related Hubs
User Avatar
No comments yet.