Welcome to the community hub built on top of the Transition metal pyridine complexes Wikipedia article.
Here, you can discuss, collect, and organize anything related to Transition metal pyridine complexes. The
...
Structure of [Ru(NH3)5py]2+, illustrating the steric avoidance of the 2,6-protons and the cis ligands.[1]
Transition metal pyridine complexes encompass many coordination complexes that contain pyridine as a ligand. Most examples are mixed-ligand complexes. Many variants of pyridine are also known to coordinate to metal ions, such as the methylpyridines, quinolines, and more complex rings.
With a pKa of 5.25 for its conjugate acid, pyridine is about 15x less basic than imidazole. Pyridine is a weak pi-acceptor ligand. Trends in the M-N distances for complexes of the type [MCl2(py)4]2+ reveal an anticorrelation with d-electron count.[2] Low-valent metal complexes of pyridines are known, e.g. IrI(diene)(pyridine)Cl. The role of pyridine as a Lewis base extends also to main group chemistry. Examples include sulfur trioxide pyridine complex SO3(py) and pyridine adduct of borane, BH3py.
Owing to the relatively wide C-N-C angle, the 2,6-hydrogen atoms interfere with the formation of [M(py)6]z complexes. A few octahedral homoleptic pyridine complexes are known. These complex cations are found in the salts [Ru(py)6]Fe4(CO)13 and [Ru(py)6](BF4)2.[3][4] Some compounds with the stoichiometry M(py)6(ClO4)2 have been reformulated as [M(py)4(ClO4)2].(py)2[5]
A common family of pyridine complexes are of the type [MCl2(py)4]n+. The chloride ligands are mutually trans in these complexes.
MCl2(pyridine)4 complexes
formula
CAS RN
key properties
Preparation
TiCl2(pyridine)4
131618-68-3
blue, triplet dTi-N=2.27 Å, dTi-Cl = 2.50 Å (thf solvate)[6]
Collins reagent, the complex CrO3(pyridine)2, is a reagent in organic chemistry.[20]
Four-coordinate complexes include tetrahedral and square planar derivatives. Examples of homoleptic tetrahedral complexes include [M(py)4]n+ for Mn+ = Cu+,[21] M = Ni2+,[22] Ag+,[23] and Ag2+.[24] Examples of homoleptic square planar complexes include the d8 cations [M(py)4]n+ for Mn+ = Pd2+,[25] Pt2+,[26] Au3+.[27]
Many substituted pyridines function as ligands for transition metals. The monomethyl derivatives, the picolines (2-, 3-, and 4-picoline), are best studied. 2-Picolines are sterically impeded from coordination.[28]
Coupling of two pyridine rings at their 2-positions gives 2,2'-bipyridine, a widely studied bidentate ligand. A number of differences are apparent between pyridine and bipyridine complexes. Many [M(bipy)3]z complexes are known, whereas analogous [M(py)6]z complexes are rare and apparently labile. Bipyridine is a redox-noninnocent ligand, as illustrated by the existence of complexes such as [Cr(bipy)3]0. The pyridine analogues of such complexes are unknown. The dichloro complexes [MCl2(bipy)2]n+ tend to be cis, as exemplified by RuCl2(bipy)2. In contrast, the complexes [MCl2(py)4]n+ are always trans.
Although transition metal pyridine complexes have few practical applications, they are widely used synthetic precursors. Many are anhydrous, soluble in nonpolar solvents, and susceptible to alkylation by organolithium and Grignard reagents. Thus CoCl2(py)4 has proven very useful in organocobalt chemistry[32][33] and NiCl2(py)4 useful in organonickel chemistry.[34]
^Shin, Yeung-gyo K.; Szalda, David J.; Brunschwig, Bruce S.; Creutz, Carol; Sutin, Norman (1997). "Electronic and Molecular Structures of Pentaammineruthenium Pyridine and Benzonitrile Complexes as a Function of Oxidation State". Inorganic Chemistry. 36 (14): 3190–3197. doi:10.1021/ic9700967. PMID11669976.
^ abcdLong, Gary J.; Clarke, Peter J. (1978). "Crystal and Molecular Structures of trans-Tetrakis(pyridine)dichloroiron(II), -Nickel(II), and -Cobalt(II) and trans-Tetrakis(pyridine)dichloroiron(II) Monohydrate". Inorganic Chemistry. 17 (6): 1394–1401. doi:10.1021/ic50184a002.
^Templeton, Joseph L. (1979). "Hexakis(pyridine)ruthenium(II) tetrafluoroborate. Molecular structure and spectroscopic properties". Journal of the American Chemical Society. 101 (17): 4906–4917. doi:10.1021/ja00511a020.
^Lichtenberg, Crispin; Adelhardt, Mario; Wörle, Michael; Büttner, Torsten; Meyer, Karsten; Grützmacher, Hansjörg (2015). "Mono- and Dinuclear Neutral and Cationic Iron(II) Compounds Supported by an Amidinato-diolefin Ligand: Characterization and Catalytic Application". Organometallics. 34 (12): 3079–3089. doi:10.1021/acs.organomet.5b00395.
^Soldatov, Dmitriy V.; Ripmeester, John A. (1998). "Hexapyridine Addition Compounds of Metal(II) Salts (Nickel and Magnesium Perchlorates, Magnesium Nitrate): Their Supramolecular Nature, and Anion Coordination of the Metal Cation [1]". Supramolecular Chemistry. 9 (3): 175–181. doi:10.1080/10610279808034984.
^ abAraya, Miguel A.; Cotton, F. Albert; Matonic, John H.; Murillo, Carlos A. (1995). "An Efficient Reduction Process Leading to Titanium(II) and Niobium(II): Preparation and Structural Characterization of trans-MCl2(py)4 Compounds, M = Ti, Nb, and Mn". Inorganic Chemistry. 34 (22): 5424–5428. doi:10.1021/ic00126a009.
^Wijeratne, Gayan B.; Zolnhofer, Eva M.; Fortier, Skye; Grant, Lauren N.; Carroll, Patrick J.; Chen, Chun-Hsing; Meyer, Karsten; Krzystek, J.; Ozarowski, Andrew; Jackson, Timothy A.; Mindiola, Daniel J.; Telser, Joshua (2015). "Electronic Structure and Reactivity of a Well-Defined Mononuclear Complex of Ti(II)". Inorganic Chemistry. 54 (21): 10380–10397. doi:10.1021/acs.inorgchem.5b01796. PMID26451744.
^Brauer, D. J.; Krüger, C. (1973). "Tetrapyridinedichlorovanadium(II)". Cryst. Struct. Commun. 2: 421.
^Edema, Jilles J. H.; Stauthamer, Walter; Van Bolhuis, Fre; Gambarotta, Sandro; Smeets, Wilberth J. J.; Spek, Anthony L. (1990). "Novel Vanadium(II) Amine Complexes: A Facile Entry in the chemistry of Divalent Vanadium. Synthesis and Characterization of Mononuclear L4VCl2 [L = Amine, Pyridine]: X-ray Structures of trans-(TMEDA)2VCl2 [TMEDA = N,N,N',N'-Tetramethylethylenediamine] and trans-Mz2V(py)2 [Mz = o-C6H4CH2N(CH3)2, py = Pyridine]". Inorganic Chemistry. 29 (7): 1302–1306. doi:10.1021/ic00332a003.
^Cotton, F. Albert; Daniels, Lee M.; Feng, Xuejun; Maloney, David J.; Murillo, Carlos A.; Zúñiga, Luis A. (1995). "Experimental and Theoretical study of a Paradigm Jahn-Teller Molecule, all-trans-CrCl2(H2O)2(pyridine)2, and the Related trans-CrCl2(pyridine)4·acetone". Inorganica Chimica Acta. 235 (1–2): 21–28. doi:10.1016/0020-1693(95)90041-4.
^Rotar, R.; Leban, I.; Brenčič, J. V. (1996). "Trans-Dichlorotetrakis(pyridine-N)molybdenum(III) Tribromide". Acta Crystallographica Section C Crystal Structure Communications. 52 (9): 2155–2157. doi:10.1107/S0108270196005628.
^Barrera, Joseph; Burrell, Anthony K.; Bryan, Jeffrey C. (1996). "Technetium(III), Technetium(II), and Technetium(I) Complexes with Pyridine Ligands. Can Pyridine Coordination Stabilize the Low Oxidation States of Technetium?". Inorganic Chemistry. 35 (2): 335–341. doi:10.1021/ic950291q. PMID11666213.
^Wong, W. T.; Lau, T. C. (1994). "trans-Dichlorotetrapyridineruthenium(II)". Acta Crystallographica Section C Crystal Structure Communications. 50 (9): 1406–1407. doi:10.1107/S0108270194002088. hdl:10722/69086.
^Gillard, R. D.; Wilkinson, G. W. (1967). "Trans -Dichlorotetra(pyridine)Rhodium(III) Salts". trans-Dichlorotetra(pyridine)rhodium(III) Salts. Inorganic Syntheses. Vol. 10. pp. 64–67. doi:10.1002/9780470132418.ch11. ISBN9780470132418.
^Kolf, S.; Preetz, W. (1997). "Darstellung, Kristallstrukturen, Schwingungsspektren und Normalkoordinatenanalysen der trans-Dihalogeno-tetrakis-Pyridin-Osmium(II)-Komplexe trans-[OsX2Py4], X = F, Cl, Br, I". Zeitschrift für anorganische und allgemeine Chemie. 623 (1–6): 501–508. doi:10.1002/zaac.19976230179.
^Gillard, R. D.; Mitchell, Simon H.; Williams, Peter A.; Vagg, Robert S. (1984). "The Structure of a Low-Temperature Form of trans-[Ir(pyridine)4Cl2]Cl. 6H2O". Journal of Coordination Chemistry. 13 (4): 325–330. doi:10.1080/00958978408073886.
^Acharya, K. R.; Tavale, S. S.; Guru Row, T. N. (1984). "Structure of mer-Trichlorotris(pyridine)rhodium(III), [RhCl3(C5H5N)3]". Acta Crystallographica Section C Crystal Structure Communications. 40 (8): 1327–1328. doi:10.1107/S0108270184007848.
^Liptay, G.; Wadsten, T.; Borbély-Kuszmann, A. (1986). "Characterization of [Ni(py)4]Cl2 and its thermal decomposition". Journal of Thermal Analysis. 31 (4): 845–852. doi:10.1007/BF01913555. S2CID93538201.
^Kauffman, George B.; Houghten, Richard A.; Likins, Robert E.; Posson, Philip L.; Ray, R. K. (2007) [1998]. "Tetrakis(Pyridine)Silver(2+)Peroxydisulfate". Inorganic Syntheses. Vol. 32. pp. 177–181. doi:10.1002/9780470132630.ch30. ISBN9780470132630.
^Corbo, Robert; Georgiou, Dayne C.; Wilson, David J. D.; Dutton, Jason L. (2014). "Reactions of [PhI(pyridine)2]2+ with Model Pd and Pt II/IV Redox Couples". Inorganic Chemistry. 53 (3): 1690–1698. doi:10.1021/ic402836d. PMID24409820.
^Wei, C. H.; Hingerty, B. E.; Busing, W. R. (1989). "Structure of Tetrakis(pyridine)platinum(II) chloride trihydrate: Unconstrained anisotropic least-squares refinement of hydrogen and non-hydrogen atoms from combined X-ray–neutron diffraction data". Acta Crystallographica Section C Crystal Structure Communications. 45: 26–30. doi:10.1107/S0108270188009515.
^ abcCorbo, Robert; Ryan, Gemma F.; Haghighatbin, Mohammad A.; Hogan, Conor F.; Wilson, David J. D.; Hulett, Mark D.; Barnard, Peter J.; Dutton, Jason L. (2016). "Access to the Parent Tetrakis(pyridine)gold(III) Trication, Facile Formation of Rare Au(III) Terminal Hydroxides, and Preliminary Studies of Biological Properties". Inorganic Chemistry. 55 (6): 2830–2839. doi:10.1021/acs.inorgchem.5b02667. PMID26930516.
^ abVallarino, L. M.; Hill, W. E.; Quagliano, J. V. (1965). "Coordination Compounds of Nickel(II) Salts with Substituted Pyridines. Complexes of 2-, 3-, and 4-Methylpyridine". Inorganic Chemistry. 4 (11): 1598–1604. doi:10.1021/ic50033a014.
^Libug, W.; Uruska, I. (1966). "The Relative Stability of Octahedral and Tetrahedral Complexes in Solution. I. Chloropyridine Complexes of Divalent Transition Metals". Inorganic Chemistry. 5 (2): 256–264. doi:10.1021/ic50036a022.
^Yang, Wenbin; Lu, Canzhong; Zhuang, Honghui (2002). "Hydrothermal Synthesis and Structures of Three New Copper Complexes: [{Cu(2,2′-bipy}2(β-Mo8O26)], [{Cu(py)3}2{Cu(py)2}2(α-Mo8O26)] and [Cu(py)2]4[(SO4)Mo12O36]". Journal of the Chemical Society, Dalton Transactions (14): 2879–2884. doi:10.1039/b111480h.
^Elschenbroich, C. (2008). Organometallchemie (6th ed.). Vieweg & Teubner. pp. 524–525. ISBN978-3-8351-0167-8.
^Zhu, Di; Janssen, Femke F. B. J.; Budzelaar, Peter H. M. (2010). "(Py)2Co(CH2SiMe3)2 as an Easily Accessible Source of "CoR2"". Organometallics. 29 (8): 1897–1908. doi:10.1021/om901045s.
^Cámpora, Juan; Del Mar Conejo, Marı́a; Mereiter, Kurt; Palma, Pilar; Pérez, Carmen; Reyes, Manuel L.; Ruiz, Caridad (2003). "Synthesis of Dialkyl, Diaryl and Metallacyclic Complexes of Ni and Pd Containing Pyridine, α-Diimines and Other Nitrogen Ligands". Journal of Organometallic Chemistry. 683: 220–239. doi:10.1016/S0022-328X(03)00691-0.