Hubbry Logo
TrimethylboraneTrimethylboraneMain
Open search
Trimethylborane
Community hub
Trimethylborane
logo
8 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
Trimethylborane
from Wikipedia
Trimethylborane
Names
Preferred IUPAC name
Trimethylborane[1]
Other names
Trimethylborine
Trimethylboron
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.008.926 Edit this at Wikidata
EC Number
  • 209-816-3
  • InChI=1S/C3H9B/c1-4(2)3/h1-3H3 checkY
    Key: WXRGABKACDFXMG-UHFFFAOYSA-N checkY
  • CB(C)C
Properties
C3H9B
Molar mass 55.92 g/mol
Appearance Colorless gas or liquid
Density 0.625 g/cm3 at −100 °C[3]
Melting point −161.5 °C (−258.7 °F; 111.6 K)
Boiling point −20.2 °C (−4.4 °F; 253.0 K)
Slight, highly reactive
Structure
Δ
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Spontaneously flammable in air; causes burns
GHS labelling:
GHS02: Flammable GHS05: Corrosive
Danger
H220, H250, H280, H314
P210, P222, P260, P264, P301+P330+P331, P302+P334, P303+P361+P353, P304+P340, P305+P351+P338, P310, P321, P363, P370+P378, P377, P381, P403, P405, P410+P403, P422, P501
NFPA 704 (fire diamond)
NFPA 704 four-colored diamondHealth 4: Very short exposure could cause death or major residual injury. E.g. VX gasFlammability 4: Will rapidly or completely vaporize at normal atmospheric pressure and temperature, or is readily dispersed in air and will burn readily. Flash point below 23 °C (73 °F). E.g. propaneInstability 4: Readily capable of detonation or explosive decomposition at normal temperatures and pressures. E.g. nitroglycerinSpecial hazard W: Reacts with water in an unusual or dangerous manner. E.g. sodium, sulfuric acid
4
4
4
Flash point Not applicable, pyrophoric gas
−40 °C (−40 °F; 233 K)[4]
Safety data sheet (SDS) MSDS from Voltaix
Related compounds
Related compounds
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)

Trimethylborane (TMB) is a toxic, pyrophoric gas with the formula B(CH3)3 (which can also be written as Me3B, with Me representing methyl).

Properties

[edit]

As a liquid it is colourless. The strongest line in the infrared spectrum is at 1330 cm−1 followed by lines at 3010 cm−1 and 1185 cm−1.

Its melting point is −161.5 °C, and its boiling point is −20.2 °C.

Vapour pressure is given by log P = 6.1385 + 1.75 log T − 1393.3/T − 0.007735 T, where T is temperature in kelvins.[5] Molecular weight is 55.914. The heat of vapourisation is 25.6 kJ/mol.[4]

Preparation

[edit]

Trimethylborane was first described in 1862 by Edward Frankland,[6] who also mentioned its adduct with ammonia.[7] Due to its dangerous nature the compound was no longer studied until 1921, when Alfred Stock and Friedrich Zeidler took advantage of the reaction between boron trichloride gas and dimethylzinc.[8] Although the substance can be prepared using Grignard reagents the output is contaminated by unwanted products from the solvent. Trimethylborane can be made on a small scale with a 98% yield by reacting trimethylaluminium in hexane with boron tribromide in dibutyl ether as a solvent.[5] Yet other methods are reacting tributyl borate with trimethylaluminium chloride, or potassium tetrafluoroborate with trimethylaluminium,[9] or adding boron trifluoride in ether to methyl magnesium iodide.[10]

Reactions

[edit]

Trimethylborane spontaneously ignites in air if the concentration is high enough. It burns with a green flame producing soot.[11] Slower oxidation with oxygen in a solvent or in the gas phase can produce dimethyltrioxadiboralane, which contains a ring of two boron and three oxygen atoms. However the major product is dimethylborylmethylperoxide, which rapidly decomposes to dimethoxymethylborane.[12]

Trimethylborane is a strong Lewis acid. B(CH3)3 can form an adduct with ammonia: (NH3):B(CH3)3.[13] as well as other Lewis bases. The Lewis acid properties of B(CH3)3 have been analyzed by the ECW model yielding EA= 2.90 and CA= 3.60. When trimethylborane forms an adduct with trimethylamine, steric repulsion between the methyl groups on the B and N results. The ECW model can provide a measure of this steric effect.

Trimethylborane reacts with water and chlorine at room temperature. It also reacts with grease but not with teflon or glass.[5]

Trimethylborane reacts with diborane to disproportionate to form methyldiborane and dimethyldiborane: (CH3)BH2.BH3 and (CH3)2BH.BH3.

It reacts as a gas with trimethylphosphine to form a solid Lewis salt with a heat of formation of −41 kcal per mol. This adduct has a heat of sublimation of −24.6 kcal/mol. No reaction occurs with trimethylarsine or trimethylstibine.[10]

Methyl lithium reacting with the Trimethylborane produces a tetramethylborate salt: LiB(CH3)4.[14] The tetramethylborate ion has a negative charge and is isoelectronic with neopentane, tetramethylsilane, and the tetramethylammonium cation.

Use

[edit]

Trimethylborane has been used as a neutron counter.[15] For this use it has to be very pure.[13] It is also used in chemical vapour deposition where boron and carbon need to be deposited together.

References

[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
Add your contribution
Related Hubs
User Avatar
No comments yet.