Hubbry Logo
search button
Sign in
Division polynomials
Division polynomials
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Division polynomials
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Division polynomials Wikipedia article. Here, you can discuss, collect, and organize anything related to Division polynomials. The purpose of the hub is to...
Add your contribution
Division polynomials

In mathematics, the division polynomials provide a way to calculate multiples of points on elliptic curves and to study the fields generated by torsion points. They play a central role in the study of counting points on elliptic curves in Schoof's algorithm.

Definition

[edit]

The set of division polynomials is a sequence of polynomials in with free variables that is recursively defined by:

The polynomial is called the nth division polynomial.

Properties

[edit]
  • In practice, one sets , and then and .
  • The division polynomials form a generic elliptic divisibility sequence over the ring .
  • If an elliptic curve is given in the Weierstrass form over some field , i.e. , one can use these values of and consider the division polynomials in the coordinate ring of . The roots of are the -coordinates of the points of , where is the torsion subgroup of . Similarly, the roots of are the -coordinates of the points of .
  • Given a point on the elliptic curve over some field , we can express the coordinates of the nth multiple of in terms of division polynomials:
where and are defined by:

Using the relation between and , along with the equation of the curve, the functions , , are all in .

Let be prime and let be an elliptic curve over the finite field , i.e., . The -torsion group of over is isomorphic to if , and to or if . Hence the degree of is equal to either , , or 0.

René Schoof observed that working modulo the th division polynomial allows one to work with all -torsion points simultaneously. This is heavily used in Schoof's algorithm for counting points on elliptic curves.

See also

[edit]

References

[edit]
  • A. Enge: Elliptic Curves and their Applications to Cryptography: An Introduction. Kluwer Academic Publishers, Dordrecht, 1999.
  • N. Koblitz: A Course in Number Theory and Cryptography, Graduate Texts in Math. No. 114, Springer-Verlag, 1987. Second edition, 1994
  • Müller : Die Berechnung der Punktanzahl von elliptischen kurven über endlichen Primkörpern. Master's Thesis. Universität des Saarlandes, Saarbrücken, 1991.
  • G. Musiker: Schoof's Algorithm for Counting Points on . Available at https://www-users.cse.umn.edu/~musiker/schoof.pdf
  • Schoof: Elliptic Curves over Finite Fields and the Computation of Square Roots mod p. Math. Comp., 44(170):483–494, 1985. Available at http://www.mat.uniroma2.it/~schoof/ctpts.pdf
  • R. Schoof: Counting Points on Elliptic Curves over Finite Fields. J. Theor. Nombres Bordeaux 7:219–254, 1995. Available at http://www.mat.uniroma2.it/~schoof/ctg.pdf
  • L. C. Washington: Elliptic Curves: Number Theory and Cryptography. Chapman & Hall/CRC, New York, 2003.
  • J. Silverman: The Arithmetic of Elliptic Curves, Springer-Verlag, GTM 106, 1986.