Hubbry Logo
search button
Sign in
Hasse's theorem on elliptic curves
Hasse's theorem on elliptic curves
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Hasse's theorem on elliptic curves
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Hasse's theorem on elliptic curves Wikipedia article. Here, you can discuss, collect, and organize anything related to Hasse's theorem on elliptic curves. The ...
Add your contribution
Hasse's theorem on elliptic curves

Hasse's theorem on elliptic curves, also referred to as the Hasse bound, provides an estimate of the number of points on an elliptic curve over a finite field, bounding the value both above and below.

If N is the number of points on the elliptic curve E over a finite field with q elements, then Hasse's result states that

The reason is that N differs from q + 1, the number of points of the projective line over the same field, by an 'error term' that is the sum of two complex numbers, each of absolute value

This result had originally been conjectured by Emil Artin in his thesis.[1] It was proven by Hasse in 1933, with the proof published in a series of papers in 1936.[2]

Hasse's theorem is equivalent to the determination of the absolute value of the roots of the local zeta-function of E. In this form it can be seen to be the analogue of the Riemann hypothesis for the function field associated with the elliptic curve.

Hasse–Weil Bound

[edit]

A generalization of the Hasse bound to higher genus algebraic curves is the Hasse–Weil bound. This provides a bound on the number of points on a curve over a finite field. If the number of points on the curve C of genus g over the finite field of order q is , then

This result is again equivalent to the determination of the absolute value of the roots of the local zeta-function of C, and is the analogue of the Riemann hypothesis for the function field associated with the curve.

The Hasse–Weil bound reduces to the usual Hasse bound when applied to elliptic curves, which have genus g=1.

The Hasse–Weil bound is a consequence of the Weil conjectures, originally proposed by André Weil in 1949 and proved by André Weil in the case of curves.[3]

See also

[edit]

Notes

[edit]
  1. ^ Artin, Emil (1924), "Quadratische Körper im Gebiete der höheren Kongruenzen. II. Analytischer Teil", Mathematische Zeitschrift, 19 (1): 207–246, doi:10.1007/BF01181075, ISSN 0025-5874, JFM 51.0144.05, MR 1544652, S2CID 117936362
  2. ^ Hasse, Helmut (1936), "Zur Theorie der abstrakten elliptischen Funktionenkörper. I, II & III", Crelle's Journal, 1936 (175), doi:10.1515/crll.1936.175.193, ISSN 0075-4102, S2CID 118733025, Zbl 0014.14903
  3. ^ Weil, André (1949), "Numbers of solutions of equations in finite fields", Bulletin of the American Mathematical Society, 55 (5): 497–508, doi:10.1090/S0002-9904-1949-09219-4, ISSN 0002-9904, MR 0029393

References

[edit]