Hubbry Logo
search button
Sign in
Measurable Riemann mapping theorem
Measurable Riemann mapping theorem
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Measurable Riemann mapping theorem
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Measurable Riemann mapping theorem Wikipedia article. Here, you can discuss, collect, and organize anything related to Measurable Riemann mapping theorem. The ...
Add your contribution
Measurable Riemann mapping theorem

In mathematics, the measurable Riemann mapping theorem is a theorem proved in 1960 by Lars Ahlfors and Lipman Bers in complex analysis and geometric function theory. Contrary to its name, it is not a direct generalization of the Riemann mapping theorem, but instead a result concerning quasiconformal mappings and solutions of the Beltrami equation. The result was prefigured by earlier results of Charles Morrey from 1938 on quasi-linear elliptic partial differential equations.

The theorem of Ahlfors and Bers states that if μ is a bounded measurable function on C with , then there is a unique solution f of the Beltrami equation

for which f is a quasiconformal homeomorphism of C fixing the points 0, 1 and ∞. A similar result is true with C replaced by the unit disk D. Their proof used the Beurling transform, a singular integral operator.

References

[edit]
  • Ahlfors, Lars; Bers, Lipman (1960), "Riemann's mapping theorem for variable metrics", Annals of Mathematics, 72 (2): 385–404, doi:10.2307/1970141, JSTOR 1970141
  • Ahlfors, Lars V. (1966), Lectures on quasiconformal mappings, Van Nostrand
  • Astala, Kari; Iwaniec, Tadeusz; Martin, Gaven (2009), Elliptic partial differential equations and quasiconformal mappings in the plane, Princeton mathematical series, vol. 48, Princeton University Press, pp. 161–172, ISBN 978-0-691-13777-3
  • Carleson, L.; Gamelin, T. D. W. (1993), Complex dynamics, Universitext: Tracts in Mathematics, Springer-Verlag, ISBN 0-387-97942-5
  • Morrey, Charles B. Jr. (1938), "On the solutions of quasi-linear elliptic partial differential equations", Transactions of the American Mathematical Society, 43 (1): 126–166, doi:10.2307/1989904, JFM 62.0565.02, JSTOR 1989904, MR 1501936, Zbl 0018.40501
  • Zakeri, Saeed; Zeinalian, Mahmood (1996), "When ellipses look like circles: the measurable Riemann mapping theorem" (PDF), Nashr-e-Riazi, 8: 5–14