Hubbry Logo
search button
Sign in
Quaquaversal tiling
Quaquaversal tiling
Comunity Hub
arrow-down
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Quaquaversal tiling
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Quaquaversal tiling Wikipedia article. Here, you can discuss, collect, and organize anything related to Quaquaversal tiling. The purpose of the hub is to c...
Add your contribution
Quaquaversal tiling
The substitution rule for the quaquaversal tiling.

The quaquaversal tiling is a nonperiodic tiling of Euclidean 3-space introduced by John Conway and Charles Radin. It is analogous to the pinwheel tiling in 2 dimensions having tile orientations that are dense in SO(3). The basic solid tiles are 30-60-90 triangular prisms arranged in a pattern such that some copies are rotated by π/3, and some are rotated by π/2 in a perpendicular direction.[1]

They construct the group G(p,q) given by a rotation of 2π/p and a perpendicular rotation by 2π/q; the orientations in the quaquaversal tiling are given by G(6,4). G(p,1) are cyclic groups, G(p,2) are dihedral groups, G(4,4) is the octahedral group, and all other G(p,q) are infinite and dense in SO(3); if p and q are odd and ≥3, then G(p,q) is a free group.[1]

Radin and Lorenzo Sadun constructed similar honeycombs based on a tiling related to the Penrose tilings and the pinwheel tiling; the former has orientations in G(10,4), and the latter has orientations in G(p,4) with the irrational rotation 2π/p = arctan(1/2). They show that G(p,4) is dense in SO(3) for the aforementioned value of p, and whenever cos(2π/p) is transcendental.[2]

References

[edit]
  1. ^ a b Conway, John H.; Radin, Charles (1998), "Quaquaversal tilings and rotations", Inventiones Mathematicae, 132 (1): 179–188, Bibcode:1998InMat.132..179C, doi:10.1007/s002220050221, MR 1618635, S2CID 14194250.
  2. ^ Radin, Charles; Sadun, Lorenzo (1998), "Subgroups of SO(3) associated with tilings", Journal of Algebra, 202 (2): 611–633, doi:10.1006/jabr.1997.7320, MR 1617675.
[edit]