Hubbry Logo
search button
Sign in
Regular grid
Regular grid
Comunity Hub
arrow-down
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Regular grid
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Regular grid Wikipedia article. Here, you can discuss, collect, and organize anything related to Regular grid. The purpose of the hub is to connect people,...
Add your contribution
Regular grid
Example of a regular grid

A regular grid is a tessellation of n-dimensional Euclidean space by congruent parallelotopes (e.g. bricks).[1] Its opposite is irregular grid.

Grids of this type appear on graph paper and may be used in finite element analysis, finite volume methods, finite difference methods, and in general for discretization of parameter spaces. Since the derivatives of field variables can be conveniently expressed as finite differences,[2] structured grids mainly appear in finite difference methods. Unstructured grids offer more flexibility than structured grids and hence are very useful in finite element and finite volume methods.

Each cell in the grid can be addressed by index (i, j) in two dimensions or (i, j, k) in three dimensions, and each vertex has coordinates in 2D or in 3D for some real numbers dx, dy, and dz representing the grid spacing.

[edit]

A Cartesian grid is a special case where the elements are unit squares or unit cubes, and the vertices are points on the integer lattice.

A rectilinear grid is a tessellation by rectangles or rectangular cuboids (also known as rectangular parallelepipeds) that are not, in general, all congruent to each other. The cells may still be indexed by integers as above, but the mapping from indexes to vertex coordinates is less uniform than in a regular grid. An example of a rectilinear grid that is not regular appears on logarithmic scale graph paper.

A skewed grid is a tessellation of parallelograms or parallelepipeds. (If the unit lengths are all equal, it is a tessellation of rhombi or rhombohedra.)

A curvilinear grid or structured grid is a grid with the same combinatorial structure as a regular grid, in which the cells are quadrilaterals or [general] cuboids, rather than rectangles or rectangular cuboids.

See also

[edit]

References

[edit]
  1. ^ Uznanski, Dan. "Grid". From MathWorld--A Wolfram Web Resource, created by Eric W. Weisstein. Retrieved 25 March 2012.
  2. ^ J.F. Thompson, B. K . Soni & N.P. Weatherill (1998). Handbook of Grid Generation. CRC-Press. ISBN 978-0-8493-2687-5.