Hubbry Logo
Unified Thread StandardUnified Thread StandardMain
Open search
Unified Thread Standard
Community hub
Unified Thread Standard
logo
7 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
Unified Thread Standard
Unified Thread Standard
from Wikipedia

The Unified Thread Standard (UTS) defines a standard thread form and series—along with allowances, tolerances, and designations—for screw threads commonly used in the United States and Canada. It is the main standard for bolts, nuts, and a wide variety of other threaded fasteners used in these countries. It has the same 60° profile as the ISO metric screw thread, but the characteristic dimensions of each UTS thread (outer diameter and pitch) were chosen as an inch fraction rather than a millimeter value. The UTS is currently controlled by ASME/ANSI in the United States.

Origins

[edit]

Basic profile

[edit]
The basic profile of all UTS threads is the same as that of all ISO metric screw threads. Only the commonly used values for Dmaj and P differ between the two standards.

Each thread in the series is characterized by its major diameter Dmaj and its pitch, P. UTS threads consist of a symmetric V-shaped thread. In any plane containing the thread axis, the flanks of the V have an angle of 60° to each other. The outermost 18 and the innermost 14 of the height H of the V-shape are cut off from the profile.

The major diameter Dmaj is the diameter of the screw measured from the outer edge of the threads. The minor diameter Dmin (also known as the root diameter) is the diameter of the screw measured from the inner edge of the threads. The major diameter may be slightly different from the shank diameter, which is the diameter of the unthreaded part of the screw. The diameters are sometimes given approximately in fractions of an inch (e.g. the major diameter of a #6 screw is 0.1380 in, approximately 964 in = 0.140625 in.

The pitch P is the distance between thread peaks. For UTS threads, which are single-start threads, it is equal to the lead, the axial distance that the screw advances during a 360° rotation. UTS threads do not usually use the pitch parameter; instead a parameter known as threads per inch (TPI) is used, which is the reciprocal of the pitch.

The relationship between the height H and the pitch P is found using the following equation where θ is half the included angle of the thread, in this case 30°:[1]

In an external (male) thread (e.g., on a bolt), the major diameter Dmaj and the minor diameter Dmin define maximum dimensions of the thread. This means that the external thread must end flat at Dmaj, but can be rounded out below the minor diameter Dmin. Conversely, in an internal (female) thread (e.g., in a nut), the major and minor diameters are minimum dimensions, therefore the thread profile must end flat at Dmin but may be rounded out beyond Dmaj. These provisions are to prevent any interferences.

The minor diameter Dmin and effective pitch diameter Dp are derived from the major diameter and pitch as:

Designation

[edit]

The standard designation for a UTS thread is a number indicating the nominal (major) diameter of the thread, followed by the pitch measured in threads per inch. For diameters smaller than 1/4 inch, the diameter is indicated by an integer number defined in the standard; for all other diameters, the inch figure is given.

This number pair is optionally followed by the letters UNC, UNF or UNEF (Unified) if the diameter-pitch combination is from the coarse, fine, or extra fine series, and may also be followed by a tolerance class.

Example: #6-32 UNC 2B (major diameter: 0.1380 inch, pitch: 32 tpi)

Unified Screw Threads — UNC, UNF and UNEF[2]
Major diameter
Dmaj (inch, mm)
Thread density (d, threads per inch) and thread pitch (p) Preferred cutting tap drill size
Coarse (UNC) Fine (UNF) Extra fine (UNEF)
d (TPI) p (inch, mm) d (TPI) p (inch, mm) d (TPI) p (inch, mm) Coarse Fine Extra fine
#0 0.0600 1.5240 None 80 0.012500 0.3175 None 3/64 .047
#1 0.0730 1.8542 64 0.015625 0.3969 72 0.013888 0.3528 None #53 .060 #53 .060
#2 0.0860 2.1844 56 0.017857 0.4536 64 0.015625 0.3969 None #50 .070 #50 .070
#3 0.0990 2.5146 48 0.020833 0.5292 56 0.017857 0.4536 None #47 .079 #45 .082
#4 0.1120 2.8448 40 0.025000 0.6350 48 0.020833 0.5292 None #43 .089 #42 .094
#5 0.1250 3.1750 40 0.025000 0.6350 44 0.022727 0.5773 None #38 .102 #37 .104
#6 0.1380 3.5052 32 0.031250 0.7938 40 0.025000 0.6350 None #36 .107 #33 .113
#8 0.1640 4.1656 32 0.031250 0.7938 36 0.027778 0.7056 None #29 .136 #29 .136
#10 0.1900 4.8260 24 0.041667 1.0583 32 0.031250 0.7938 None #25 .150 #21 .159
#12 0.2160 5.4864 24 0.041667 1.0583 28 0.035714 0.9071 32 0.031250 0.7938 #16 .177 #14 .182 3/16 .188
1/4 0.2500 6.3500 20 0.050000 1.2700 28 0.035714 0.9071 32 0.031250 0.7938 #7 .201 #3 .213 7/32 .219
5/16 0.3125 7.9375 18 0.055556 1.4111 24 0.041667 1.0583 32 0.031250 0.7938 F .257 I .272 9/32 .281
3/8 0.3750 9.5250 16 0.062500 1.5875 24 0.041667 1.0583 32 0.031250 0.7938 5/16 .313 Q .332 11/32 .344
7/16 0.4375 11.1125 14 0.071428 1.8143 20 0.050000 1.2700 28 0.035714 0.9071 U .368 25/64 .391 Y .404
1/2 0.5000 12.7000 13 0.076923 1.9538 20 0.050000 1.2700 28 0.035714 0.9071 27/64 .422 29/64 .453 15/32 .469
9/16 0.5625 14.2875 12 0.083333 2.1167 18 0.055556 1.4111 24 0.041667 1.0583 31/64 .484 1/2 .500 +33/64 .516
5/8 0.6250 15.8750 11 0.090909 2.3091 18 0.055556 1.4111 24 0.041667 1.0583 +17/32 .531 +9/16 .563 +37/64 .578
3/4 0.7500 19.0500 10 0.100000 2.5400 16 0.062500 1.5875 20 0.050000 1.2700 21/32 .656 11/16 .688 +45/64 .703
7/8 0.8750 22.2250 9 0.111111 2.8222 14 0.071428 1.8143 20 0.050000 1.2700 +49/64 .766 +51/64 .797 +53/64 .828
1″ 1.0000 25.4000 8 0.125000 3.1750 12[a] 0.083333 2.1167 20 0.050000 1.2700 7/8 .875 59/64 .922 61/64 .953
⁠1+1/8 1.1250 28.5750 7 0.142857 3.6286 12 0.083333 2.1167
⁠1+1/4 1.2500 31.7500 7 0.142857 3.6286 12 0.083333 2.1167
⁠1+3/8 1.3750 34.9250 6 0.166667 4.2333 12 0.083333 2.1167
⁠1+1/2 1.5000 38.1000 6 0.166667 4.2333 12 0.083333 2.1167
⁠1+3/4 1.7500 44.4500 5 0.200000 5.0800
2″ 2.0000 50.8000 ⁠4+1/2 0.222222 5.6444
⁠2+1/4 2.2500 57.1500 ⁠4+1/2 0.222222 5.6444
⁠2+1/2 2.5000 63.5000 4 0.250000 6.3500
⁠2+3/4 2.7500 69.8500 4 0.250000 6.3500
3″ 3.0000 76.2000 4 0.250000 6.3500
⁠3+1/4 3.2500 82.5500 4 0.250000 6.3500
⁠3+1/2 3.5000 88.9000 4 0.250000 6.3500
⁠3+3/4 3.7500 95.2500 4 0.250000 6.3500
4″ 4.0000 101.6000 4 0.250000 6.3500
  1. ^ For many years non-standard 1-inch 14-tpi nuts and bolts have been widely used instead of standard-sized 1-inch 12-tpi fasteners; consequently 1″-14 fasteners are easier to find and less expensive than 1″-12 fasteners. After several decades 1″-14 fasteners have now come to be commonly referred to as "Standard Fine Thread" or "UNF". Though technically incorrect (the UNF standard specifies 1″-12), size 1″-14 is universally accepted as standard for fine-threaded 1-inch fasteners, and "1-inch 14-tpi NF" has become established as a "common use" term, or "a genericized brand name/standard". In other words, the 1″-12 standard has lacked effective enforcement for a long enough time (many decades) to give generic trademark–like status to 1-inch 14-tpi fasteners.

The following formula is used to calculate the major diameter of a numbered screw greater than or equal to 0: Major diameter = Screw # × 0.013 in + 0.060 in. For example, the major diameter of a #10 screw is 10 × 0.013 in + 0.060 in = 0.190 in. To calculate the major diameter of "aught" size screws count the number of extra zeroes and multiply this number by 0.013 in and subtract from 0.060 in. For example, the major diameter of a #0000 screw is 0.060 in − (3 × 0.013 in) = 0.060 in − 0.039 in = 0.021 in.

The number series of machine screws has been extended downward to include #00-90 (0.047 in = 0.060 in − 0.013 in) and #000-120 (0.034 in = 0.060 in − 2 × 0.013 in) screws;[3] however, the main standard for screws smaller than #0 is ANSI/ASME standard B1.10 Unified Miniature Screw Threads. This defines a series of metric screws named after their major diameters in millimetres, from 0.30 UNM to 1.40 UNM. Preferred sizes are 0.3, 0.4, 0.5, 0.6, 0.8, 1.0 and 1.2 mm, with additional defined sizes halfway between.[4] The standard thread pitch is approximately 1/4 of the major diameter. The thread form is slightly modified to increase the minor diameter, and thus the strength of screws and taps. The major diameter still extends to within 1/8H of the theoretical sharp V, but the total depth of the thread is reduced 4% from 5/8H = 5/8 cos(30°) P ≈ 0.541P to 0.52P.[5] This increases the amount of the theoretical sharp V which is cut off at the minor diameter by 10% from 0.25H to 7/80.52/cos 30° ≈ 0.27456H.

The number series of machine screws once included more odd numbers and went up to #16 or more. Standardization efforts in the late 19th and the early part of the 20th century reduced the range of sizes considerably. Now, it is less common to see machine screws larger than #14, or odd number sizes other than #1, #3 and #5. Even though #14 and #16 screws are still available, they are not as common as sizes #0 through #12.[citation needed]

Sometimes "special" diameter and pitch combinations (UNS) are used, for example a 0.619 in (15.7 mm) major diameter with 20 threads per inch. UNS threads are rarely used for bolts, but rather on nuts, tapped holes, and threaded ODs. Because of this UNS taps are readily available.[6][7] Most UNS threads have more threads per inch than the correlating UNF or UNEF standard; therefore they are often the strongest thread available.[8] Because of this they are often used in applications where high stresses are encountered, such as machine tool spindles[9] or automotive spindles.[10]

Gauging

[edit]

A screw thread gauging system comprises a list of screw thread characteristics that must be inspected to establish the dimensional acceptability of the screw threads on a threaded product and the gauge(s) which shall be used when inspecting those characteristics.

Currently this gauging for UTS is controlled by:

ASME/ANSI B1.2-1983 Gauges And Gauging For Unified Inch Screw Threads
This Standard provides essential specifications and dimensions for the gauges used on Unified inch screw threads UN [unified] and UNR [external threads only] thread form, and covers the specifications and dimensions for the thread gauges and measuring equipment listed in Tables 1 and 2. The basic purpose and use of each gauge are also described.
ASME/ANSI B1.3-2007 Screw Thread Gauging Systems for Acceptability: Inch and Metric Screw Threads (UN, UNR, UNJ, M, and MJ)
  1. This Standard presents screw thread gauging systems suitable for determining the acceptability of Unified [UN], UNR [external threads only], UNJ [internal and external threads], M, and MJ screw threads on externally and internally threaded products. It establishes the criteria for screw thread acceptance when a gauging system is used.
  2. A screw thread gauging system comprises a list of screw thread characteristics that must be inspected to establish the dimensional acceptability of the screw threads on a threaded product and the gauge(s) which shall be used when inspecting those characteristics.
  3. Federal Government Use. When this Standard is approved by the Department of Defense and federal agencies and is incorporated into Federal Standard-H28/20 [FED-STD-H28/20], Screw Thread Standards for Federal Services, Section 20, the use of this Standard by the federal government is subject to all the requirements and limitations of Federal Standard-H28/20 [FED-STD-H28/20].

These standards provide essential specifications and dimensions for the gauges used on Unified inch screw threads (UN, UNR, UNJ thread form) on externally and internally threaded products. It also covers the specifications and dimensions for the thread gauges and measuring equipment. The basic purpose and use of each gauge are also described. It also establishes the criteria for screw thread acceptance when a gauging system is used.

Tolerance classes

[edit]

A classification system exists for ease of manufacture and interchangeability of fabricated threaded items. Most (but certainly not all) threaded items are made to a classification standard called the Unified Screw Thread Standard Series. This system is analogous to the fits used with assembled parts.

  • Class 1 threads are loose fit, intended for ease of assembly or use in a dirty environment.
  • Class 2 threads are free fit, and the most common. They are designed to maximize strength considering typical machine shop capability and machine practice.
  • Class 3 threads are medium fit, still quite common and used for closer tolerances on high quality work.
  • Class 4 threads previously designated a close fit for even tighter tolerances, but this classification is now obsolete.
  • Class 5 fit is an interference thread, requiring the use of a wrench for turning. These can be seen in applications like spring shackles on an automobile.

The letter suffix "A" or "B" denotes whether the threads are external or internal, respectively. Classes 1A, 2A, 3A apply to external threads; Classes 1B, 2B, 3B apply to internal threads.[11]

Thread class refers to the acceptable range of pitch diameter for any given thread. The pitch diameter is indicated as Dp in the figure shown above. There are several methods that are used to measure the pitch diameter. The most common method used in production is by way of a go/no-go gauge.

[edit]
  • ASME/ANSI B1.1 – 2019 Unified Inch Screw Threads, UN, UNR, & UNJ Thread Form
  • ASME/ANSI B1.10M – 2004 Unified Miniature Screw Threads

See also

[edit]

Notes

[edit]
[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
from Grokipedia
The Unified Thread Standard (UTS), also known as the Unified National Thread series, is a standardized specification for inch-based screw threads that defines the thread form, series designations, allowances, tolerances, and classes for external and internal threads used in fasteners such as bolts, nuts, and screws. It features a symmetric 60° V-shaped thread angle with flat crests and roots, ensuring compatibility and precision in assembly. Primarily adopted in the United States and Canada, the UTS facilitates interchangeability across industries including manufacturing, automotive, aerospace, and construction. Developed in the aftermath of to address supply chain disruptions caused by incompatible thread standards among Allied nations, the UTS was collaboratively established by representatives from the , , and in November 1948. This effort replaced the earlier American National Thread system, which had limitations in tolerances and production efficiency, and was formally codified as the American Standard B1.1 in 1949 under the (ASME). The standard has since evolved, with the latest iteration, ASME B1.1-2024, incorporating refined specifications for thread forms (UN, UNR with rounded roots for external threads, and UNJ for applications), series (such as UNC for coarse threads and UNF for fine threads), and tolerance classes (1 for liberal fit, 2 for general purpose, and 3 for high precision). Key series under the UTS include the Unified National Coarse (UNC) threads, which provide a coarser pitch for easier assembly and greater resistance in applications like structural bolting, and the Unified National Fine (UNF) threads, which offer finer pitches for better adjustment and strength in precision machinery. Thread sizes range from small diameters like #0 (0.060 inches) to larger ones up to 4 inches, with threads per inch (TPI) varying by series—for example, 20 TPI for a 1/4-inch UNC or 28 TPI for a 1/4-inch UNF. Unlike metric ISO threads, which use millimeter measurements, the UTS is inch-based and lacks direct conversions, though both share the 60° angle for similar load distribution. Allowances and tolerances ensure reliable mating, with external threads typically having positive allowances to prevent binding. The UTS remains a cornerstone of North American engineering due to its role in promoting standardized production, reducing manufacturing costs, and enabling global trade compatibility where inch units prevail. Ongoing updates, such as those in the 2024 edition, address modern needs like tighter tolerances for and high-stress environments.

Historical Development

19th-Century Origins

In the early , the absence of standardized threads in Britain led to significant variability in manufacturing, prompting engineer to conduct a comprehensive survey of existing practices among British machine shops in 1841. This effort revealed over 20 different thread forms in use, highlighting the need for uniformity to facilitate during the . By 1860, Whitworth's proposal for a national standard—featuring a 55-degree , rounded roots and crests, and fixed pitches proportional to diameter—gained widespread adoption in Britain, particularly among railroad companies, becoming the (BSW). Across the Atlantic, similar challenges arose in the , where non-standard threads complicated machinery production and repair amid rapid industrialization. In 1864, American engineer William Sellers presented a paper to the proposing a unified U.S. system with a 60-degree , flat crests and , and simplified pitches to ease and gauging compared to the Whitworth form. Sellers' design addressed the impracticality of adopting the British 55-degree angle, which required specialized tools ill-suited to American workshops, and aimed to reduce the hundreds of incompatible thread variants prevalent in U.S. manufacturing. This incompatibility between Anglo-American threads exacerbated issues in and equipment , such as difficulties in assembling imported British machinery with domestic parts. The U.S. adopted Sellers' thread as the United States Standard in 1868 for federal procurement, marking an initial step toward national consistency. Building on Sellers' foundation, the American National Screw Thread (ANS) emerged in the 1890s as a refined iteration, incorporating both coarse and fine series to accommodate diverse applications while maintaining the 60-degree angle. This standard was formally codified in 1924 by the (ASME) through its B1a specification, which detailed dimensions for bolts, nuts, machine screws, and tapped holes, ensuring broader industrial adoption and resolving lingering variations in pitch and tolerance.

20th-Century Unification and Evolution

exposed significant incompatibilities between national screw thread standards, particularly between American and British systems, which complicated field repairs and supply logistics for Allied forces. This prompted the formation of the National Screw Thread Commission in July 1918 under the U.S. Bureau of Standards to address interchangeability, though it was disbanded shortly after the war. In the 1920s, these efforts evolved into the American National Standard under the American Standards Association (ASA), which refined the Sellers thread form with a 60-degree , standardized pitches for coarse (UNC) and fine (UNF) series, and established basic fit guidelines to improve manufacturing consistency. The onset of World War II intensified the need for unified standards, as U.S. forces encountered issues with British Whitworth threads in shared equipment. In 1943, the American-British-Canadian (ABC) conference, convened under the U.S.-Britain Combined Production and Resources Board in New York, initiated collaborative discussions among delegations from the three nations to harmonize thread forms. Follow-up meetings in London (1944) and Ottawa (1945) built on this, agreeing to adopt the 60-degree thread angle from the Sellers system while incorporating elements of the British Standard Whitworth for better compatibility. Post-war, the 1948 ABC conference in Washington, D.C., via the Joint Session on the Unification of Screw Threads at the National Bureau of Standards, finalized the agreement on November 18, establishing the Unified Thread System with flat crests and roots, and provisions for rounded roots in high-stress applications. The Unified Thread Standard was formally adopted in 1949 through ASME B1.1, superseding the American National Standard and serving as the inch-based prototype for ISO metric threads. Subsequent revisions have refined tolerances, allowances, and designations; for instance, the 2003 edition (ASME B1.1-2003) updated UN and UNR forms with improved root radius specifications for external threads to enhance fatigue resistance. The UNJ form, featuring a larger root radius for internal threads, was initially detailed in ASME B1.15-1995 before integration into B1.1 in the 2019 revision. The latest 2024 edition (ASME B1.1-2024) incorporates ongoing updates for precision manufacturing, including expanded series and compatibility with modern coatings.

Thread Geometry and Form

Basic Profile

The Unified Thread Standard (UTS) defines a basic thread profile characterized by a symmetrical V-shape with a 60° included (θ = 60°), forming the flanks of the thread. This is based on the sharp V-thread form derived from an with side length equal to the pitch p, ensuring compatibility and strength in fastening applications. The profile truncates the crests and roots of this fundamental triangle to create flat surfaces, reducing stress concentrations and facilitating manufacturing. Specifically, the crests are truncated by 1/8 of the basic thread height H, while the roots are truncated by 1/4 H, resulting in a practical thread form that balances engagement and clearance. The height of the fundamental triangle, or basic height of the thread, is given by the formula: H=32p0.866025pH = \frac{\sqrt{3}}{2} p \approx 0.866025 p
Add your contribution
Related Hubs
User Avatar
No comments yet.