Hubbry Logo
search button
Sign in
Porous set
Porous set
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Porous set
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Porous set Wikipedia article. Here, you can discuss, collect, and organize anything related to Porous set. The purpose of the hub is to connect people, fos...
Add your contribution
Porous set

In mathematics, a porous set is a concept in the study of metric spaces. Like the concepts of meagre and measure zero sets, a porous set can be considered "sparse" or "lacking bulk"; however, porous sets are not equivalent to either meagre sets or measure zero sets, as shown below.

Definition

[edit]

Let (Xd) be a complete metric space and let E be a subset of X. Let B(xr) denote the closed ball in (Xd) with centre x ∈ X and radius r > 0. E is said to be porous if there exist constants 0 < α < 1 and r0 > 0 such that, for every 0 < r ≤ r0 and every x ∈ X, there is some point y ∈ X with

A subset of X is called σ-porous if it is a countable union of porous subsets of X.

Properties

[edit]
  • Any porous set is nowhere dense. Hence, all σ-porous sets are meagre sets (or of the first category).
  • If X is a finite-dimensional Euclidean space Rn, then porous subsets are sets of Lebesgue measure zero.
  • However, there does exist a non-σ-porous subset P of Rn which is of the first category and of Lebesgue measure zero. This is known as Zajíček's theorem.
  • The relationship between porosity and being nowhere dense can be illustrated as follows: if E is nowhere dense, then for x ∈ X and r > 0, there is a point y ∈ X and s > 0 such that
However, if E is also porous, then it is possible to take s = αr (at least for small enough r), where 0 < α < 1 is a constant that depends only on E.

References

[edit]
  • Reich, Simeon; Zaslavski, Alexander J. (2002). "Two convergence results for continuous descent methods". Electronic Journal of Differential Equations. 2002 (24): 1–11. ISSN 1072-6691.
  • Zajíček, L. (1987–1988). "Porosity and σ-porosity". Real Anal. Exchange. 13 (2): 314–350. doi:10.2307/44151885. ISSN 0147-1937. JSTOR 44151885. MR 0943561