Hubbry Logo
search button
Sign in
Multiplicative group
Multiplicative group
Comunity Hub
arrow-down
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Multiplicative group
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Multiplicative group Wikipedia article. Here, you can discuss, collect, and organize anything related to Multiplicative group. The purpose of the hub is to...
Add your contribution
Multiplicative group

In mathematics and group theory, the term multiplicative group refers to one of the following concepts:

Examples

[edit]
  • The multiplicative group of integers modulo n is the group under multiplication of the invertible elements of . When n is not prime, there are elements other than zero that are not invertible.
  • The multiplicative group of positive real numbers is an abelian group with 1 its identity element. The logarithm is a group isomorphism of this group to the additive group of real numbers, .
  • The multiplicative group of a field is the set of all nonzero elements: , under the multiplication operation. If is finite of order q (for example q = p a prime, and ), then the multiplicative group is cyclic: .

Group scheme of roots of unity

[edit]

The group scheme of nth roots of unity is by definition the kernel of the n-power map on the multiplicative group GL(1), considered as a group scheme. That is, for any integer n > 1 we can consider the morphism on the multiplicative group that takes nth powers, and take an appropriate fiber product of schemes, with the morphism e that serves as the identity.

The resulting group scheme is written μn (or [2]). It gives rise to a reduced scheme, when we take it over a field K, if and only if the characteristic of K does not divide n. This makes it a source of some key examples of non-reduced schemes (schemes with nilpotent elements in their structure sheaves); for example μp over a finite field with p elements for any prime number p.

This phenomenon is not easily expressed in the classical language of algebraic geometry. For example, it turns out to be of major importance in expressing the duality theory of abelian varieties in characteristic p (theory of Pierre Cartier). The Galois cohomology of this group scheme is a way of expressing Kummer theory.

See also

[edit]

Notes

[edit]
  1. ^ Hazewinkel et al. 2004, p. 2
  2. ^ Milne 1980, pp. xiii, 66

References

[edit]
  • Hazewinkel, Michiel; Gubareni, Nadiya; Gubareni, Nadezhda Mikhaĭlovna; Kirichenko, Vladimir V. (2004), Algebras, rings and modules, vol. 1, Springer, ISBN 1-4020-2690-0
  • Milne, James S. (1980). Étale cohomology. Princeton University Press.