Hubbry Logo
MetreMetreMain
Open search
Metre
Community hub
Metre
logo
8 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
Metre
Metre
from Wikipedia

metre
Historical replicas of metric standards, including an iron metre
General information
Unit systemSI
Unit oflength
Symbolm[1]
Conversions
1 m[1] in ...... is equal to ...
   Imperial/US units   
  • ≈ 1.0936 yd
  • ≈ 3.2808 ft
  • ≈ 39.37 in
   Nautical units   ≈ 0.00053996 nmi

The metre (or meter in US spelling; symbol: m) is the base unit of length in the International System of Units (SI). Since 2019, the metre has been defined as the length of the path travelled by light in vacuum during a time interval of 1/299792458 of a second, where the second is defined by a hyperfine transition frequency of caesium.[2]

The metre was originally defined in 1791 by the French National Assembly as one ten-millionth of the distance from the equator to the North Pole along a great circle, so the Earth's polar circumference is approximately 40000 km.

In 1799, the metre was redefined in terms of a prototype metre bar. The bar used was changed in 1889, and in 1960 the metre was redefined in terms of a certain number of wavelengths of a certain emission line of krypton-86. The current definition was adopted in 1983 and modified slightly in 2002 to clarify that the metre is a measure of proper length. From 1983 until 2019, the metre was formally defined as the length of the path travelled by light in vacuum in 1/299792458 of a second. After the 2019 revision of the SI, this definition was rephrased to include the definition of a second in terms of the caesium frequency ΔνCs. This series of amendments did not alter the size of the metre significantly – today Earth's polar circumference measures 40007.863 km, a change of about 200 parts per million from the original value of exactly 40000 km, which also includes improvements in the accuracy of measuring the circumference.

Spelling

[edit]

Metre is the standard spelling of the metric unit for length in nearly all English-speaking nations, the exceptions being the United States[3][4][5][6] and the Philippines[7] which use meter.

Measuring devices (such as ammeter, speedometer) are spelled "-meter" in all variants of English.[8] The suffix "-meter" has the same Greek origin as the unit of length.[9][10]

Etymology

[edit]

The etymological roots of metre can be traced to the Greek verb μετρέω (metreo) ((I) measure, count or compare)[11] and noun μέτρον (metron) (a measure),[12] which were used for physical measurement, for poetic metre and by extension for moderation or avoiding extremism (as in "be measured in your response"). This range of uses is also found in Latin (metior, mensura), French (mètre, mesure), English and other languages. The Greek word is derived from the Proto-Indo-European root *meh₁- 'to measure'. The motto ΜΕΤΡΩ ΧΡΩ (metro chro) on the seal of the International Bureau of Weights and Measures (BIPM) was approved by Adolphe Hirsch on 11 July 1875 and may be translated as "Keep the measure"; it thus calls for both measurement and moderation.[13] In English, the use of the word metre (for the French unit mètre) began at least as early as 1797.[14]

History of definition

[edit]
Replicas of historical metric standards, including an iron copy of the mètre des Archives.

During the French Revolution, the traditional units of measure were to be replaced by consistent measures based on natural phenomena. As a base unit of length, scientists had favoured the seconds pendulum (a pendulum with a half-period of one second) one century earlier, but this was rejected as it had been discovered that this length varied from place to place with local gravity. The mètre was introduced – defined as one ten-millionth of the shortest distance from the North Pole to the equator passing through Paris, assuming an Earth flattening of 1/334.[15]

Following the arc measurement of Delambre and Méchain, the historical French official standard of the metre was made available in the form of the Mètre des Archives, a platinum bar held in Paris. It was originally also planned to dematerialize the definition of the metre by counting the number of swings of a one-metre-long pendulum during a day at a latitude of 45°.[16] However, dematerializing the definition of units of length by means of the pendulum would prove less reliable than artefacts.[17][18]

During the mid nineteenth century, following the American Revolution and the decolonization of the Americas, the metre gained adoption in Americas, particularly in scientific usage, and it was officially established as an international measurement unit by the Metre Convention of 1875 at the beginning of the Second Industrial Revolution.

The Mètre des Archives and its copies such as the Committee Meter were replaced from 1889 at the initiative of the International Association of Geodesy by thirty platinum-iridium bars kept across the globe.[19] A better standardisation of the new prototypes of the metre and their comparison with each other and with the historical standard involved the development of specialised measuring equipment and the definition of a reproducible temperature scale.[20]

In collaboration with the International Geodetic Association created to measure the Earth, the International Bureau of Weights and Measures became the world reference centre for the measurement of geodetic bases thanks to the discovery of invar, an alloy of nickel and iron with a coefficient of thermal expansion close to zero.[21][22]

Progress in science finally allowed the definition of the metre to be dematerialised; thus in 1960 a new definition based on a specific number of wavelengths of light from a specific transition in krypton-86 allowed the standard to be universally available by measurement. In 1983 this was updated to a length defined in terms of the speed of light; this definition was reworded in 2019:[23]

The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum c to be 299792458 when expressed in the unit m⋅s−1, where the second is defined in terms of the caesium frequency ΔνCs.

Where older traditional length measures are still used, they are now defined in terms of the metre – for example the yard has since 1959 officially been defined as exactly 0.9144 metre.[24]

In May 2025, the 150th anniversary of the Metre Convention was celebrated with events in Paris and Versailles, organized by the BIPM and the French government. The celebrations highlighted the long-standing international cooperation in metrology under the theme “Measurements for all times, for all people.”[25][26]

SI prefixed forms of metre

[edit]

SI prefixes can be used to denote decimal multiples and submultiples of the metre, as shown in the table below. Long distances are usually expressed in km, astronomical units (149.6 Gm), light-years (10 Pm), or parsecs (31 Pm), rather than in Mm or larger multiples; "30 cm", "30 m", and "300 m" are more common than "3 dm", "3 dam", and "3 hm", respectively.

The terms micron and millimicron have been used instead of micrometre (μm) and nanometre (nm), respectively, but this practice is discouraged.[27]

SI multiples of metre (m)
Submultiples Multiples
Value SI symbol Name Value SI symbol Name
10−1 m dm decimetre 101 m dam decametre
10−2 m cm centimetre 102 m hm hectometre
10−3 m mm millimetre 103 m km kilometre
10−6 m μm micrometre 106 m Mm megametre
10−9 m nm nanometre 109 m Gm gigametre
10−12 m pm picometre 1012 m Tm terametre
10−15 m fm femtometre 1015 m Pm petametre
10−18 m am attometre 1018 m Em exametre
10−21 m zm zeptometre 1021 m Zm zettametre
10−24 m ym yoctometre 1024 m Ym yottametre
10−27 m rm rontometre 1027 m Rm ronnametre
10−30 m qm quectometre 1030 m Qm quettametre

Equivalents in other units

[edit]
Metric unit
expressed in non-SI units
Non-SI unit
expressed in metric units
1 metre 1.0936 yard 1 yard = 0.9144 metre
1 metre 39.370 inches 1 inch = 0.0254 metre
centimetre 0.39370 inch 1 inch = 2.54 centimetres
millimetre 0.039370 inch 1 inch = 25.4 millimetres
1 metre = 1010 ångström 1 ångström = 10−10 metre
nanometre = 10 ångström 1 ångström = 100 picometres

Within this table, "inch" and "yard" mean "international inch" and "international yard"[28] respectively, though approximate conversions in the left column hold for both international and survey units.

"≈" means "is approximately equal to";
"=" means "is exactly equal to".

One metre is exactly equivalent to 5 000/127 inches and to 1 250/1 143 yards.

A simple mnemonic to assist with conversion is "three 3s": 1 metre is nearly equivalent to 3 feet 3+38 inches. This gives an overestimate of 0.125 mm.

The ancient Egyptian cubit was about 0.5 m (surviving rods are 523–529 mm).[29] Scottish and English definitions of the ell (2 cubits) were 941 mm (0.941 m) and 1143 mm (1.143 m) respectively.[30][31] The ancient Parisian toise (fathom) was slightly shorter than 2 m and was standardised at exactly 2 m in the mesures usuelles system, such that 1 m was exactly 12 toise.[32] The Russian verst was 1.0668 km.[33] The Swedish mil was 10.688 km, but was changed to 10 km when Sweden converted to metric units.[34]

See also

[edit]

References

[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
from Grokipedia
The metre (symbol: m) is the base unit of length in the International System of Units (SI), defined as the distance travelled by light in a vacuum during a time interval of 1/299,792,458 of a second. This definition, established in 1983 and unchanged in the 2019 SI revision, ensures the metre's precision and universality by linking it to fundamental physical constants rather than physical artifacts. The metre serves as the foundation for all other length units in the metric system, such as the centimetre (1/100 m) and kilometre (1,000 m), facilitating consistent measurement across scientific, engineering, and everyday applications worldwide. Originating during the French Revolution, the metre was proposed in 1791 by the French Academy of Sciences as one ten-millionth of the distance from the Earth's equator to the North Pole along a meridian through Paris, aiming to create a universal, decimal-based system of measurement independent of local standards. This Earth-based definition was measured through a survey led by astronomers Jean Baptiste Joseph Delambre and Pierre Méchain between Dunkerque and Barcelona, though wartime disruptions and later discoveries of the Earth's non-spherical shape introduced minor inaccuracies. In 1799, France officially adopted the metric system, with platinum metre and kilogram standards deposited in the national archives as the first material prototypes. The metre's definition evolved to enhance accuracy and reproducibility. In 1889, the 1st General Conference on Weights and Measures (CGPM) established an international prototype metre—a platinum-iridium bar kept at the International Bureau of Weights and Measures (BIPM) in Sèvres, France—serving as the standard until 1960. That year, the 11th CGPM redefined the metre as exactly 1,650,763.73 wavelengths of the orange-red emission line in the electromagnetic spectrum of the krypton-86 atom in vacuum, shifting to an optical standard for greater precision. The current light-based definition, adopted by the 17th CGPM in 1983, eliminated reliance on specific materials or atoms, aligning the metre with the invariant speed of light (c = 299,792,458 m/s). The metric system, anchored by the metre, has achieved near-global adoption since the 1875 Metre Convention, signed by 17 nations including the United States, which established the CGPM and BIPM to maintain international standards. Today, the SI is legally mandatory in over 190 countries for official use, with the United States, Liberia, and Myanmar as the primary exceptions retaining customary units (like inches and feet) for everyday purposes, though they recognize the metre in science and trade. This widespread implementation underscores the metre's role in promoting standardization, from global trade and manufacturing to space exploration and particle physics.

Nomenclature

Spelling

The spelling of the unit of length varies between "metre" and "meter" depending on the variant of English and the context. In British English, Australian English, and most international scientific literature, "metre" is the standard spelling for the unit of measurement. In contrast, American English consistently uses "meter" for the same unit. This divergence in American English originated in the early 19th century, when lexicographer Noah Webster advocated for spelling reforms to distinguish American usage from British norms. In his 1828 An American Dictionary of the English Language, Webster adopted "meter" for the unit, shifting away from the earlier English importation of "metre" from French in 1797. This change aligned with his broader pattern of simplifying endings from "-re" to "-er" in words like "centre" to "center," promoting phonetic consistency and national identity. The International Bureau of Weights and Measures (BIPM) endorses "metre" as the preferred spelling in global scientific communication to ensure uniformity across languages and dialects. This preference follows international standards such as the ISO/IEC 80000 series, which specifies "metre" for the SI unit name. Official documents reflect these conventions: the BIPM's International System of Units (SI) brochure (9th edition, 2019) uses "metre" throughout its English text. In the United States, however, federal publications like the National Institute of Standards and Technology's Metric SI Guide (SP 811, 2008) employ "meter" to align with domestic spelling norms.

Etymology

The term "metre" for the unit of length derives from the ancient Greek word metron (μέτρον), meaning "a measure" or "that by which anything is measured," which entered Latin as metrum denoting measure, length, or poetic verse. This root passed into Old French as metre, primarily referring to poetic rhythm or versification, before being repurposed in the 18th century for scientific measurement. During the development of the metric system in revolutionary France, the French Academy of Sciences formally coined mètre in 1791 as the name for the proposed unit of length, defined as one ten-millionth of the distance from the North Pole to the equator along a meridian through Paris. The initial physical prototype, a platinum bar crafted in 1799 based on surveys by Jean-Baptiste Delambre and Pierre Méchain, was designated the mètre des Archives and deposited in the French National Archives as the official standard. This naming emphasized the unit's role as a universal, rational measure tied to natural phenomena, supplanting arbitrary royal standards. The selection of mètre drew a conceptual parallel to its longstanding poetic usage, where "metre" signifies the measured rhythm of verse—both evoking systematic quantification, whether of lines in poetry or segments of physical space—stemming from the shared Greek etymology of proportion and limit. In English, the term entered scientific literature shortly after its French introduction, with early adoptions appearing in 1797 translations and reports on the metric system, such as those discussing the Paris meridian measurements; it gained broader usage in the early 19th century amid growing international interest in decimal standardization.

Historical Development

Origins in the French Revolution

During the French Revolution, the need for a rational and universal system of measurement prompted significant reforms in France. In 1790, the National Assembly tasked the French Academy of Sciences with developing a new set of units based on natural and invariant standards to replace the inconsistent local measures prevalent across the country. The Academy, influenced by earlier suggestions from figures like Charles-Maurice de Talleyrand, proposed the metre as the fundamental unit of length, envisioning it as a decimal-based measure derived from the Earth's dimensions to ensure universality and ease of use in science, trade, and administration. The metre was specifically defined as one ten-millionth of the distance from the North Pole to the Equator along the Paris meridian, a choice that tied the unit to the planet's natural geometry while centering it on France for practical surveying purposes. To determine this length accurately, the Academy commissioned astronomers Jean-Baptiste Joseph Delambre and Pierre-François-André Méchain in 1792 to conduct a geodetic survey of the meridian arc from Dunkirk in northern France to Barcelona in Spain, a distance representing approximately one-tenth of the full quadrant. The expedition, which lasted until 1798, relied on triangulation methods using theodolites and baseline measurements, but encountered severe challenges including political instability—such as arrests by revolutionary authorities suspicious of the scientists' activities—and difficult terrain in the Pyrenees mountains, where weather, equipment damage, and border conflicts with Spain during the Revolutionary Wars further delayed progress. Despite these obstacles, the survey yielded an approximate value for the meridian quadrant, though later analysis revealed minor errors in accounting for Earth's curvature. On April 7, 1795, the French National Convention enacted a law establishing the decimal metric system, with the provisional metre defined provisionally as 443.296 lines of the toise—a traditional French unit roughly equivalent to 1.949 meters—pending the final survey results, thereby legally replacing older units like the toise, pied, and pouce with a coherent decimal framework to promote equality and standardization across the republic. The survey data, refined by the Academy, enabled the creation of the first official prototype in 1799: the Mètre des Archives, an X-shaped bar crafted from platinum for the Bureau des Longitudes and deposited in the National Archives in Paris on June 22, 1799, as the enduring standard "for all times, for all men." This artifact, measuring slightly shorter than the intended meridian fraction due to measurement discrepancies, served as the authoritative reference until subsequent international refinements in the 19th century.

19th and Early 20th Century Definitions

The Metre Convention, signed on 20 May 1875 in Paris by representatives from seventeen nations, established an international framework for metric system unification and created the International Bureau of Weights and Measures (BIPM) in Sèvres, France, to oversee global coordination of measurements. The BIPM was tasked with maintaining prototypes, conducting comparisons of national standards, and ensuring uniformity in length measurements across member states. This treaty marked a pivotal step in standardizing the metre beyond its French origins, facilitating international adoption through shared artifacts and verification processes. In 1889, the 1st General Conference on Weights and Measures (CGPM) adopted the International Prototype Metre, an X-shaped bar constructed from a 90% platinum–10% iridium alloy for enhanced stability and minimized thermal effects, as the definitive standard, supplanting the original Mètre des Archives. The metre was initially defined as the distance between the end faces of this bar when supported on two cylinders spaced 571 mm apart, at the temperature of melting ice (0 °C) and standard atmospheric pressure. This prototype, designated as No. 6, was preserved at the BIPM under controlled conditions to serve as the global reference for length. The 7th CGPM in 1927 provided a more precise clarification, redefining the metre as the distance, at 0 °C, between the axes of the two central lines engraved on the neutral surface of the prototype bar's upper face, measured via microscope under standard conditions to account for the bar's geometry and reduce measurement errors. To support widespread use, the BIPM produced and distributed calibrated national prototype metres to member states; for instance, National Prototype Metre No. 27 was delivered to the United States in January 1890, certified as matching the international standard within specified tolerances. Periodic verifications at the BIPM, conducted at intervals such as every 10–40 years depending on the prototype group, compared these national copies against the international prototype and its official duplicates to maintain traceability and detect any drifts. Despite these efforts, the artifact-based standard faced inherent limitations, including the platinum-iridium alloy's coefficient of thermal expansion (approximately 8.7 × 10^{-6} K^{-1}), which required precise temperature control during measurements, and gradual surface wear from handling and environmental exposure that could alter the engraved lines over decades. By the mid-20th century, international comparisons revealed inconsistencies on the order of micrometres, underscoring the prototype's insufficient long-term stability for advancing scientific precision; this prompted metrologists in the 1950s to advocate for a definition tied to invariant natural phenomena rather than a physical object.

Post-1960 Redefinitions

In 1960, the 11th General Conference on Weights and Measures (CGPM) redefined the metre to address the limitations of the platinum-iridium prototype, which suffered from wear and variability in measurements. The new definition established the metre as the length equal to 1,650,763.73 wavelengths in vacuum of the radiation corresponding to the transition between the energy levels 2p102p_{10} and 5d55d_5 of the krypton-86 atom. This atomic standard was selected for its superior reproducibility, enabled by interferometric techniques that provided higher accuracy than prior proposals, such as those based on mercury-198 wavelengths, and allowed for easier international replication without a central artifact. By the early 1970s, advancements in laser technology prompted further refinement. In June 1973, the Comité Consultatif pour la Définition du Mètre (CCDM) issued Recommendation M1, proposing an interim practical realization of the metre using stabilized helium-neon lasers, including the methane-stabilized variant at a wavelength of 3.39 μm and the iodine-127 (127^{127}I2_2)-stabilized one at 633 nm. These recommendations, which maintained compatibility with the 1960 krypton standard, improved measurement stability and precision in laboratories worldwide, serving as a transitional step toward a definition independent of specific spectral lines. The culmination of these efforts occurred in 1983, when the 17th CGPM adopted Resolution 1, redefining the metre as the distance travelled by light in vacuum during a time interval of 1/299,792,458 of a second, thereby fixing the speed of light in vacuum at exactly 299,792,458 m/s. This universal constant-based approach, informed by precise frequency measurements from the 1970s (including those tying laser wavelengths to the krypton standard), abrogated the 1960 definition and eliminated all reliance on physical or atomic artifacts. These post-1960 redefinitions fundamentally transformed metrology by removing dependencies on unstable prototypes and spectral emissions, achieving uncertainties below 109^{-9} and ensuring invariant, reproducible realizations of the metre across global institutions. The transition enhanced precision in fields like geodesy and engineering, fostering consistency without the need for international comparisons of material standards.

Modern Definition

1983 Speed-of-Light Basis

In 1983, the 17th General Conference on Weights and Measures (CGPM) adopted a definition of the metre based on the speed of light, which was refined in the 2019 revision of the SI to explicitly fix the value of c. The current definition states: "The metre, symbol m, is the SI unit of length. It is defined by taking the fixed numerical value of the speed of light in vacuum cc to be 299 792 458 when expressed in the unit m s^{-1}, where the second is defined in terms of ΔνCs\Delta \nu_{\text{Cs}}." This definition implies that the metre is the length of the path travelled by light in vacuum during a time interval of 1/299 792 458 of a second. It replaced the prior definition based on the wavelength of krypton-86 radiation, offering a more universal standard grounded in a fundamental physical constant rather than a specific atomic transition. The definition fixes the speed of light in vacuum, denoted as cc, to the exact numerical value of 299 792 458 m/s, as previously recommended by the 15th CGPM in 1975. By anchoring the metre to this invariant constant and the second—the SI base unit of time—the unit of length becomes derived solely from temporal measurements and the properties of light in vacuum. This approach eliminates reliance on material artifacts, such as prototype bars, ensuring the metre's realization is independent of physical objects that could degrade or vary. The 1983 redefinition, as updated in 2019, significantly advanced the coherence of the International System of Units (SI) by forging a direct link between length and time through the fixed value of cc. As a result, the metre is exact and unchanging, providing a stable foundation for metrology that does not evolve with technological improvements or experimental refinements.

Practical Realization and Metrology

The practical realization of the metre relies on interferometry techniques that measure wavelengths of light from frequency-stabilized lasers, linking length directly to the defined speed of light and the SI second. A primary method involves counting interference fringes produced by these lasers over a known distance, where the wavelength λ relates to the frequency ν via λ = c / ν, with c fixed at 299 792 458 m/s. The iodine-stabilized helium-neon (He-Ne) laser operating at a nominal wavelength of 633 nm, with a frequency of approximately 473.612 THz, serves as a widely used standard for this purpose, achieving a relative standard uncertainty of about 2.2 × 10^{-11}. Other recommended radiations from the CIPM list, such as those from argon-ion or frequency-doubled Yb-doped fiber lasers, enable realizations with uncertainties as low as 10^{-12}. High-precision time intervals are essential for these measurements, facilitated by optical frequency combs and atomic clocks. Frequency combs, generated by mode-locked femtosecond lasers, provide a "ruler" of evenly spaced frequencies traceable to the caesium atomic clock defining the second, allowing absolute frequency measurements of stabilizer lasers with sub-hertz accuracy over optical wavelengths. This enables length realizations with sub-picometer resolution, as the metre is derived from Δl = (c / ν) × N, where N is the fringe count. Atomic clocks, such as optical lattice clocks using strontium or ytterbium ions, further enhance stability by tying frequencies to quantum transitions, supporting interferometric measurements with uncertainties below 10^{-11} relative standard deviation. National metrology institutes (NMIs), such as the National Institute of Standards and Technology (NIST) in the United States and the National Physical Laboratory (NPL) in the United Kingdom, play a central role in disseminating the metre through calibration services and international comparisons coordinated by the International Bureau of Weights and Measures (BIPM). These institutes maintain primary realizations using the aforementioned laser systems and provide traceable calibrations to secondary standards, ensuring global consistency via key comparisons like those organized by the Consultative Committee for Length (CCL). For instance, NIST's Length and Distance Group calibrates interferometers and scales traceable to the SI metre, while NPL employs frequency-stabilized lasers for dimensional metrology services. The traceability chain extends from these primary standards to everyday instruments, forming an unbroken sequence of calibrations. At the top, laser frequencies are measured against caesium fountains or optical clocks; these are then transferred to working interferometers for calibrating gauge blocks or line scales with uncertainties around 10^{-8} m/m. Further dissemination occurs through commercial labs to end-user tools like rulers (typically 0.1 mm uncertainty) and GPS receivers, where distances are computed from signal travel times traceable to the SI second and the fixed c, achieving positional accuracies of a few meters. Current realizations maintain a relative standard uncertainty of approximately 10^{-11}, with ongoing improvements from quantum technologies, including chip-scale frequency combs and trapped-ion clocks, aiming for uncertainties below 10^{-15} to support advanced applications in nanotechnology and geodesy.

Units and Equivalents

SI Prefixed Forms

The SI system employs a set of standard decimal prefixes to form multiples and submultiples of the metre, enabling the expression of lengths across a vast range of scales from the subatomic to astronomical. These prefixes, ranging from quecto- (10^{-30}) to quetta- (10^{30}), are defined by powers of 10 and are applied uniformly to all SI base units, including the metre. Prefixes attach directly to the unit name "metre" to create compound words, such as kilometre for 10^3 metres, without hyphens or spaces; similarly, symbols combine inseparably, as in km for the symbol of the kilometre. This rule ensures consistency, though for the related unit kilogram, prefixes apply to "gram" (e.g., milligram, mg) rather than kilogram. Compound prefixes, like microkilo-, are prohibited to maintain simplicity. In practice, certain prefixed metres find widespread use in specific domains: the kilometre (km) measures large distances in transportation, geography, and athletics; the centimetre (cm) and millimetre (mm) are standard in everyday measurements and mechanical engineering for dimensions of objects and components; the micrometre (μm) applies in biology and manufacturing for microscopic features; and the nanometre (nm) is essential in optics, semiconductor design, and nanotechnology for describing wavelengths and atomic structures. Non-decimal units like the ångström (Å = 10^{-10} m) were once used for expressing atomic and molecular scales but are not part of the SI and are considered obsolete, though they occasionally appear in older scientific literature; the SI recommends the nanometre as the equivalent replacement.
FactorPrefix NamePrefix SymbolPrefixed Metre Example
10^{30}quettaQquettametre (Qm)
10^{27}ronnaRronnametre (Rm)
10^{24}yottaYyottametre (Ym)
10^{21}zettaZzettametre (Zm)
10^{18}exaEexametre (Em)
10^{15}petaPpetametre (Pm)
10^{12}teraTterametre (Tm)
10^9gigaGgigametre (Gm)
10^6megaMmegametre (Mm)
10^3kilokkilometre (km)
10^2hectohhectometre (hm)
10^1decadadecametre (dam)
10^{-1}deciddecimetre (dm)
10^{-2}centiccentimetre (cm)
10^{-3}millimmillimetre (mm)
10^{-6}microμmicrometre (μm)
10^{-9}nanonnanometre (nm)
10^{-12}picoppicometre (pm)
10^{-15}femtoffemtometre (fm)
10^{-18}attoaattometre (am)
10^{-21}zeptozzeptometre (zm)
10^{-24}yoctoyyoctometre (ym)
10^{-27}rontorrontometre (rm)
10^{-30}quectoqquectometre (qm)

Conversions to Other Measurement Systems

The metre relates to units in other measurement systems through internationally standardized conversion factors, ensuring precise interoperability across scientific, engineering, and everyday applications. In the imperial and US customary systems, which define length based on the yard as exactly 0.9144 metre, the following exact equivalents apply: 1 metre equals 1.093613298 yards; since 1 yard equals 3 feet, 1 metre equals 3.280839895 feet; and with 1 foot equaling 12 inches (where 1 inch is exactly 0.0254 metre), 1 metre equals 39.37007874 inches. Nautical and surveying units, used in maritime and land measurement, also have defined relations to the metre. The international nautical mile is exactly 1852 metres, so 1 metre equals approximately 0.0005399568 nautical miles. In surveying, Gunter's chain (used in US customary contexts) measures exactly 20.1168 metres or 100 links (each link exactly 0.201168 metre), yielding 1 metre ≈ 0.0497097 chains or ≈ 4.97097 links. For historical context, ancient units provide approximate equivalents that highlight the metre's role in modern standardization. The Roman pes (foot), a foundational unit in classical engineering, measured approximately 0.296 metre, so 1 metre ≈ 3.38 pedes. Similarly, the historical Chinese chi (used in architecture and surveying from the Zhou dynasty onward) was about 0.303 metre, making 1 metre ≈ 3.30 chi. In practical terms, the metre is roughly 3 feet 3 inches or 3.3 feet, facilitating quick mental conversions in non-metric regions. It also approximates the length of a standard professional baseball bat, which measures about 0.864 metre.
CategoryUnitValue in Metres (or Equivalent)Notes/Source
US Customary/ImperialInch1 m = 39.37007874 inExact; inch = 0.0254 m
Foot1 m = 3.280839895 ftExact; foot = 0.3048 m
Yard1 m = 1.093613298 ydExact; yard = 0.9144 m
NauticalNautical mile1 m ≈ 0.0005399568 nmiNM = 1852 m exactly
SurveyingChain (Gunter's)1 m ≈ 0.0497097 chChain = 20.1168 m exactly
Link1 m ≈ 4.97097 liLink = 0.201168 m exactly
HistoricalRoman pes1 m ≈ 3.38 pesPes ≈ 0.296 m
Chinese chi1 m ≈ 3.30 chiChi ≈ 0.303 m (historical)

References

Add your contribution
Related Hubs
User Avatar
No comments yet.