Hubbry Logo
search button
Sign in
Stooge sort
Stooge sort
Comunity Hub
arrow-down
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Stooge sort
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Stooge sort Wikipedia article. Here, you can discuss, collect, and organize anything related to Stooge sort. The purpose of the hub is to connect people, f...
Add your contribution
Stooge sort

Stooge sort
Visualization of Stooge sort (only shows swaps).
ClassSorting algorithm
Data structureArray
Worst-case performance
Worst-case space complexity

Stooge sort is a recursive sorting algorithm. It is notable for its exceptionally poor time complexity of = The algorithm's running time is thus slower compared to reasonable sorting algorithms, and is slower than bubble sort, a canonical example of a fairly inefficient sort. It is, however, more efficient than Slowsort. The name comes from The Three Stooges.[1]

The algorithm is defined as follows:

  • If the value at the start is larger than the value at the end, swap them.
  • If there are three or more elements in the list, then:
    • Stooge sort the initial 2/3 of the list
    • Stooge sort the final 2/3 of the list
    • Stooge sort the initial 2/3 of the list again

It is important to get the integer sort size used in the recursive calls by rounding the 2/3 upwards, e.g. rounding 2/3 of 5 should give 4 rather than 3, as otherwise the sort can fail on certain data.

Implementation

[edit]

Pseudocode

[edit]
 function stoogesort(array L, i = 0, j = length(L)-1){
     if L[i] > L[j] then       // If the leftmost element is larger than the rightmost element
         swap(L[i],L[j])       // Then swap them
     if (j - i + 1) > 2 then   // If there are at least 3 elements in the array
         t = floor((j - i + 1) / 3)
         stoogesort(L, i, j-t) // Sort the first 2/3 of the array
         stoogesort(L, i+t, j) // Sort the last 2/3 of the array
         stoogesort(L, i, j-t) // Sort the first 2/3 of the array again
     return L
 }

Haskell

[edit]
-- Not the best but equal to above 

stoogesort :: (Ord a) => [a] -> [a]
stoogesort [] = []
stoogesort src = innerStoogesort src 0 ((length src) - 1)

innerStoogesort :: (Ord a) => [a] -> Int -> Int -> [a]
innerStoogesort src i j 
    | (j - i + 1) > 2 = src''''
    | otherwise = src'
    where 
        src'    = swap src i j -- need every call
        t = floor (fromIntegral (j - i + 1) / 3.0)
        src''   = innerStoogesort src'   i      (j - t)
        src'''  = innerStoogesort src'' (i + t)  j
        src'''' = innerStoogesort src''' i      (j - t)

swap :: (Ord a) => [a] -> Int -> Int -> [a]
swap src i j 
    | a > b     =  replaceAt (replaceAt src j a) i b
    | otherwise = src
    where 
        a = src !! i
        b = src !! j

replaceAt :: [a] -> Int -> a -> [a]
replaceAt (x:xs) index value
    | index == 0 = value : xs
    | otherwise  =  x : replaceAt xs (index - 1) value

References

[edit]
  1. ^ "CSE 373" (PDF). courses.cs.washington.edu. Retrieved 14 September 2020.

Sources

[edit]
[edit]