Hubbry Logo
search button
Sign in
Uniform algebra
Uniform algebra
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Uniform algebra
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Uniform algebra Wikipedia article. Here, you can discuss, collect, and organize anything related to Uniform algebra. The purpose of the hub is to connect p...
Add your contribution
Uniform algebra

In functional analysis, a uniform algebra A on a compact Hausdorff topological space X is a closed (with respect to the uniform norm) subalgebra of the C*-algebra C(X) (the continuous complex-valued functions on X) with the following properties:[1]

the constant functions are contained in A
for every x, y X there is fA with f(x)f(y). This is called separating the points of X.

As a closed subalgebra of the commutative Banach algebra C(X) a uniform algebra is itself a unital commutative Banach algebra (when equipped with the uniform norm). Hence, it is, (by definition) a Banach function algebra.

A uniform algebra A on X is said to be natural if the maximal ideals of A are precisely the ideals of functions vanishing at a point x in X.

Abstract characterization

[edit]

If A is a unital commutative Banach algebra such that for all a in A, then there is a compact Hausdorff X such that A is isomorphic as a Banach algebra to a uniform algebra on X. This result follows from the spectral radius formula and the Gelfand representation.

Notes

[edit]
  1. ^ (Gamelin 2005, p. 25)

References

[edit]
  • Gamelin, Theodore W. (2005). Uniform Algebras. American Mathematical Soc. ISBN 978-0-8218-4049-8.
  • Gorin, E.A. (2001) [1994], "Uniform algebra", Encyclopedia of Mathematics, EMS Press