Hubbry Logo
search button
Sign in
Hyperrectangle
Hyperrectangle
Comunity Hub
arrow-down
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Hyperrectangle
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Hyperrectangle Wikipedia article. Here, you can discuss, collect, and organize anything related to Hyperrectangle. The purpose of the hub is to connect peo...
Add your contribution
Hyperrectangle
Hyperrectangle
Orthotope
A rectangular cuboid is a 3-orthotope
TypePrism
Faces2n
Edgesn × 2n−1
Vertices2n
Schläfli symbol{}×{}×···×{} = {}n[1]
Coxeter diagram···
Symmetry group[2n−1], order 2n
Dual polyhedronRectangular n-fusil
Propertiesconvex, zonohedron, isogonal
Projections of K-cells onto the plane (from to ). Only the edges of the higher-dimensional cells are shown.

In geometry, a hyperrectangle (also called a box, hyperbox, -cell or orthotope[2]), is the generalization of a rectangle (a plane figure) and the rectangular cuboid (a solid figure) to higher dimensions. A necessary and sufficient condition is that it is congruent to the Cartesian product of finite intervals.[3] This means that a -dimensional rectangular solid has each of its edges equal to one of the closed intervals used in the definition. Every -cell is compact.[4][5]

If all of the edges are equal length, it is a hypercube. A hyperrectangle is a special case of a parallelotope.

Formal definition

[edit]

For every integer from to , let and be real numbers such that . The set of all points in whose coordinates satisfy the inequalities is a -cell.[6]

Intuition

[edit]

A -cell of dimension is especially simple. For example, a 1-cell is simply the interval with . A 2-cell is the rectangle formed by the Cartesian product of two closed intervals, and a 3-cell is a rectangular solid.

The sides and edges of a -cell need not be equal in (Euclidean) length; although the unit cube (which has boundaries of equal Euclidean length) is a 3-cell, the set of all 3-cells with equal-length edges is a strict subset of the set of all 3-cells.

Types

[edit]

A four-dimensional orthotope is likely a hypercuboid.[7]

The special case of an n-dimensional orthotope where all edges have equal length is the n-cube or hypercube.[2]

By analogy, the term "hyperrectangle" can refer to Cartesian products of orthogonal intervals of other kinds, such as ranges of keys in database theory or ranges of integers, rather than real numbers.[8]

Dual polytope

[edit]
n-fusil
Example: 3-fusil
TypePrism
Faces2n
Vertices2n
Schläfli symbol{}+{}+···+{} = n{}[1]
Coxeter diagram ...
Symmetry group[2n−1], order 2n
Dual polyhedronn-orthotope
Propertiesconvex, isotopal

The dual polytope of an n-orthotope has been variously called a rectangular n-orthoplex, rhombic n-fusil, or n-lozenge. It is constructed by 2n points located in the center of the orthotope rectangular faces.

An n-fusil's Schläfli symbol can be represented by a sum of n orthogonal line segments: { } + { } + ... + { } or n{ }.

A 1-fusil is a line segment. A 2-fusil is a rhombus. Its plane cross selections in all pairs of axes are rhombi.

n Example image
1
Line segment
{ }
2
Rhombus
{ } + { } = 2{ }
3
Rhombic 3-orthoplex inside 3-orthotope
{ } + { } + { } = 3{ }

See also

[edit]

Notes

[edit]
  1. ^ a b N.W. Johnson: Geometries and Transformations, (2018) ISBN 978-1-107-10340-5 Chapter 11: Finite symmetry groups, 11.5 Spherical Coxeter groups, p.251
  2. ^ a b Coxeter, 1973
  3. ^ Foran (1991)
  4. ^ Rudin (1976:39)
  5. ^ Foran (1991:24)
  6. ^ Rudin (1976:31)
  7. ^ Hirotsu, Takashi (2022). "Normal-sized hypercuboids in a given hypercube". arXiv:2211.15342 [math.CO].
  8. ^ See e.g. Zhang, Yi; Munagala, Kamesh; Yang, Jun (2011), "Storing matrices on disk: Theory and practice revisited" (PDF), Proc. VLDB, 4 (11): 1075–1086, doi:10.14778/3402707.3402743.

References

[edit]
[edit]