Hubbry Logo
search
search button
Sign in
Historyarrow-down
starMorearrow-down
Hubbry Logo
search
search button
Sign in
2016 in reptile paleontology
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the 2016 in reptile paleontology Wikipedia article. Here, you can discuss, collect, and organize anything related to 2016 in reptile paleontology. The purpose of the hub is to connect people, foster deeper knowledge, and help improve the root Wikipedia article.
Add your contribution
Inside this hub
2016 in reptile paleontology

This list of fossil reptiles described in 2016 is a list of new taxa of fossil reptiles that were described during the year 2016, as well as other significant discoveries and events related to reptile paleontology that occurred in 2016.

Lepidosaurs

[edit]

Lizards

[edit]

Research

[edit]
  • Twelve specimens of lizards (including stem-gekkotans, crown-agamids, a lacertid, a putative stem-chamaeleonid and squamates of uncertain phylogenetic placement, probably stem-squamates) are described from the Cretaceous (Albian-Cenomanian boundary) amber from Myanmar by Daza et al. (2016);[1] however, the supposed stem-chamaeleonid is subsequently reinterpreted as an albanerpetontid amphibian by Matsumoto & Evans (2018).[2]
  • A study of almost 30 specimens of Polyglyphanodon sternbergi, including almost complete skeletons, is published by Simões et al. (2016), who report the discovery of previously unrecognized ontogenetic series, sexual dimorphism and a complete lower temporal bar in the skull of members of this species.[3]
  • New anatomical data on the Late Cretaceous lizard Slavoia darevskii is published by Tałanda (2016), who interprets it as a stem-amphisbaenian.[4]
  • A study on the skull anatomy of the Eocene amphisbaenian Spathorhynchus fossorium is published by Müller, Hipsley & Maisano (2016).[5]
  • A study on mosasaur tooth implantation and its phylogenetic implications is published by Liu et al. (2016).[6]
  • A redescription of the mosasaur Hainosaurus bernardi Dollo (1885) is published by Jimenez-Huidobro & Caldwell (2016), who transfer this species to the genus Tylosaurus and synonymize genera Tylosaurus and Hainosaurus.[7]
  • A revision of the species assigned to the mosasaur genus Tylosaurus is published by Jiménez-Huidobro, Simões & Caldwell (2016);[8] their conclusion that T. kansasensis is a junior synonym of T. nepaeolicus is subsequently rejected by Stewart & Mallon (2018).[9]
  • Early Miocene chamaeleonid fossils, including a specimen tentatively attributed to the species Chamaeleo cf. andrusovi Čerňanský (2010), previously known only from the early Miocene of the Czech Republic, are described from the Aliveri locality (Euboea, Greece) by Georgalis, Villa & Delfino (2016).[10]
  • Lizard fossils which might be the oldest known chameleon fossils from India are described from the Miocene Nagri Formation by Sankhyan & Čerňanský (2016).[11]

New taxa

[edit]
Name Novelty Status Authors Age Unit Location Notes Images

Bagaluus[12]

Gen. et sp. nov

Valid

Alifanov

Early Cretaceous

Mongolia

A member of Scincomorpha belonging to the family Hodzhakuliidae. The type species is B. primigenius.

Carnoscincus[12]

Gen. et sp. nov

Valid

Alifanov

Early Cretaceous

Mongolia

A member of Scincomorpha belonging to the family Hodzhakuliidae. The type species is C. eublepharus.

Janosikia[13]

Gen. et comb. nov

Valid

Čerňanský, Klembara & Smith

Early Miocene

Germany

A member of Lacertidae; a new genus for "Ophisaurus" ulmensis Gerhardt (1903).

Jeddaherdan[14]

Gen. et sp. nov

Disputed

Apesteguía et al.

Uncertain

Morocco

An iguanian belonging to the group Acrodonta. The type species is J. aleadonta. Originally described as coming from the Cretaceous Kem Kem Group; Vullo et al. (2022) argued that its fossil material is actually Quaternary in age, and considered it to be a fossil material of a member of the genus Uromastyx.[15]

Ophisauromimus[16]

Gen. et comb. nov

Valid

Čerňanský, Klembara & Műller

Oligocene

France
Germany

A member of Anguidae. A new genus for "Dopasia" coderetensis Augé (2005); genus also includes "Dopasia" frayssensis Augé (2005).

Platynotoides[12]

Gen. et sp. nov

Junior homonym

Alifanov

Early Cretaceous

Mongolia

A member of Scincomorpha belonging to the family Hodzhakuliidae. The type species is P. altidentatus. The generic name is preoccupied by Platynotoides Kaszab (1975).

Pluridens calabaria[17]

Sp. nov

Valid

Longrich

Late Cretaceous (late Campanian)

Nkporo Shale

Nigeria

A mosasaur, a species of Pluridens.

Solastella[18]

Gen. et sp. nov

Valid

Stocker & Kirk

Eocene

Devil's Graveyard Formation

United States
( Texas)

A rhineurid amphisbaenian. The type species is Solastella cookei.

Snakes

[edit]

Research

[edit]
  • Lee et al. (2016) examine the limb anatomy of Tetrapodophis amplectus, which according to the authors is suggestive of aquatic habits.[19]
  • A redescription of the Cenomanian snake Simoliophis rochebrunei on the basis of new fossil material from France is published by Rage, Vullo & Néraudeau (2016).[20]
  • Smith & Scanferla (2016) describe a juvenile specimen of Palaeopython fischeri from the Eocene Messel pit with preserved stomach contents, including a specimen of the stem-basilisk species Geiseltaliellus maarius, which in turn preserves an unidentified insect in its stomach.[21]
  • McNamara et al. (2016) describe pigment cells responsible for coloration and patterning preserved in a fossil skin of a colubrid snake from the Late Miocene Libros Lagerstätte (Teruel, Spain).[22]
  • New fossil material of the viperid Laophis crotaloides is described from Greece by Georgalis et al. (2016).[23]

New taxa

[edit]
Name Novelty Status Authors Age Unit Location Notes Images

Lunaophis[24]

Gen. et sp. nov

Valid

Albino, Carrillo-Briceño & Neenan

Late Cretaceous (Cenomanian)

La Luna Formation

Venezuela

A snake of uncertain phylogenetic placement. The type species is L. aquaticus.

Platyspondylophis[25]

Gen. et sp. nov

Valid

Smith et al.

Eocene (Ypresian)

Cambay Shale Formation

India

A member of Madtsoiidae. The type species is P. tadkeshwarensis.

Rieppelophis[26]

Gen. et comb. nov

Valid

Scanferla, Smith & Schaal

Eocene

Messel pit

Germany

A member of Boidae. A new genus for "Messelophis" ermannorum Schaal & Baszio (2004).

Ichthyosauromorphs

[edit]

Research

[edit]
  • A study of taxonomic richness, disparity and evolutionary rates of ichthyosaurs throughout the Cretaceous period is published by Fischer et al. (2016).[27]
  • A restudy of "Platypterygius" campylodon is published by Fischer (2016), who transfers this species to the genus Pervushovisaurus.[28]
  • A revision of the ichthyosaur material of the British Middle and Late Jurassic referable to Ophthalmosaurus icenicus is published by Moon & Kirton (2016).[29]

New taxa

[edit]
Name Novelty Status Authors Age Unit Location Notes Images

Cryopterygius kielanae[30]

Sp. nov

Valid

Tyborowski

Late Jurassic (Tithonian)

Kcynia Formation

Poland

A member of Ophthalmosauridae. Transferred to the genus Undorosaurus by Zverkov & Efimov (2019).[31]

Ichthyosaurus larkini[32]

Sp. nov

Valid[33]

Lomax & Massare

Early Jurassic (Hettangian)

United Kingdom

Ichthyosaurus somersetensis[32]

Sp. nov

Valid[33]

Lomax & Massare

Early Jurassic (Hettangian)

United Kingdom

Sclerocormus[34]

Gen. et sp. nov

Valid

Jiang et al.

Early Triassic (Olenekian)

Nanlinghu Formation

China

A basal member of Ichthyosauriformes. The type species is S. parviceps.

Wahlisaurus[35]

Gen. et sp. nov

Valid[36]

Lomax

Early Jurassic (Hettangian)

United Kingdom

A member of Leptonectidae. The type species is W. massarae.

Sauropterygians

[edit]

Research

[edit]

New taxa

[edit]
Name Novelty Status Authors Age Unit Location Notes Images

Alexandronectes[41]

Gen. et sp. nov

Valid

Otero et al.

Late Cretaceous (early Maastrichtian)

Conway Formation

New Zealand

An aristonectine elasmosaurid plesiosaur. The type species is Alexandronectes zealandiensis.

Dawazisaurus[42]

Gen. et sp. nov

Valid

Cheng et al.

Middle Triassic (Anisian)

Guanling Formation

China

A non-pistosauroid eosauropterygian of uncertain phylogenetic placement. The type species is Dawazisaurus brevis.

Kawanectes[43]

Gen. et comb. nov

Valid

O'Gorman

Late Cretaceous (late Campanian–early Maastrichtian)

Allen Formation
La Colonia Formation[44]

Argentina

An elasmosaurid plesiosaur. The type species is "Trinacromerum" lafquenianum Gasparini & Goñi (1985).

Lariosaurus sanxiaensis[45][46]

Sp. nov

Valid

Cheng in Chen et al.

Early Triassic

Jialingjiang Formation

China

Lariosaurus vosseveldensis[47]

Sp. nov

Valid

Klein et al.

Middle Triassic (Anisian)

Netherlands

Polycotylus sopozkoi[48]

Sp. nov

Valid

Efimov, Meleshin & Nikiforov

Late Cretaceous

Russia

Stenorhynchosaurus[49]

Gen. et sp. nov

Valid

Páramo et al..

Early Cretaceous (late Barremian)

Paja Formation

Colombia

A pliosaurid plesiosaur. The type species is Stenorhynchosaurus munozi.

Turtles

[edit]

Research

[edit]
  • A study on the latitudinal gradients in species diversity of Mesozoic non-marine turtles is published by Nicholson et al. (2016).[50]
  • A study on the morphological diversity of the skulls of the fossil and recent turtles through time is published by Foth & Joyce (2016).[51]
  • A study of the bone shell histology of Condorchelys antiqua and its implications for the lifestyle of the species is published by Cerda, Sterli & Scheyer (2016).[52]
  • A study of the bone histology of shell elements of the Late Cretaceous—Paleocene chelid Yaminuechelys is published by Jannello, Cerda & de la Fuente (2016).[53]
  • A review of the fossil record, taxonomy and diagnostic features of the fossil species belonging to the genus Chelus is published by Ferreira et al. (2016).[54]
  • Fossils of Plesiochelys etalloni and Tropidemys langii, otherwise known from the Kimmeridgian of the Swiss and French Jura Mountains, are described from the British Kimmeridge Clay by Anquetin & Chapman (2016).[55]
  • An emended diagnosis of Testudo catalaunica and a study of phylogeny of extinct members of the genus Testudo is published by Luján et al. (2016).[56]
  • Giant tortoise fossils collected from the late Miocene-early Pliocene Mehrten Formation (California, USA) are identified as belonging to members of the species Hesperotestudo orthopygia by Biewer et al. (2016).[57]

New taxa

[edit]
Name Novelty Status Authors Age Unit Location Notes Images

Algorachelus[58]

Gen. et sp. nov

Valid

Pérez-García[59]

Late Cretaceous (Cenomanian)

Arenas de Utrillas Formation

Portugal[60] Spain

A member of Bothremydidae. The type species is A. peregrinus.

Anhuichelys doumuensis[61]

Sp. nov

Valid

Tong et al.

Middle Paleocene

Doumu Formation

China

A stem-tortoise, a species of Anhuichelys.

Clemmys hutchensorum[62]

Sp. nov

Valid

Bourque

Early Pleistocene (late Blancan)

United States
( Florida)

A species of Clemmys.

Fontainechelon[63]

Gen. et comb. nov

Valid

Pérez-García, Ortega & Jiménez Fuentes

Early Eocene

France

A tortoise; a new genus for "Achilemys" cassouleti Claude & Tong (2004).

Inaechelys[64]

Gen. et sp. nov

Disputed

Carvalho, Ghilardi & Barreto

Paleocene (Danian)

Maria Farinha Formation

Brazil

A member of Bothremydidae. The type species is I. pernambucensis. Its status as a valid taxon was challenged by Romano (2016), who considered the genus Inaechelys to be a junior synonym of the genus Rosasia and the species I. pernambucensis/Rosasia pernambucensis to be a nomen dubium.[65]

Keuperotesta[66]

Gen. et sp. nov

Valid

Szczygielski & Sulej

Late Triassic

Germany

A member of Proterochersidae. The type species is Keuperotesta limendorsa. The genus Keuperotesta was considered to be a junior synonym of the genus Proterochersis by Joyce (2017), though the author maintained K. limendorsa as a distinct species within the latter genus.[67]

Kinosternon notolophus[68]

Sp. nov

Valid

Bourque

Miocene (Clarendonian)

Alachua Formation
Statenville Formation

United States
( Florida)

A mud turtle.

Kinosternon pannekollops[68]

Sp. nov

Valid

Bourque

Miocene (Clarendonian)

Ogallala Formation

United States
( Texas)

A mud turtle.

Kinosternon rincon[68]

Sp. nov

Valid

Bourque

Miocene (late Barstovian)

Cerro Conejo Formation

United States
( New Mexico)

A mud turtle.

Kinosternon wakeeniense[68]

Sp. nov

Valid

Bourque

Miocene (Clarendonian)

Ash Hollow Formation
Ogallala Formation

United States
( Kansas,
Nebraska)

A mud turtle.

Neurankylus notos[69]

Sp. nov

Valid

Lichtig & Lucas

Late Cretaceous (Coniacian-Santonian)

Crevasse Canyon Formation

United States
( New Mexico)

A member of Baenidae.

Neurankylus torrejonensis[70]

Sp. nov

Valid

Lyson et al.

Paleocene (Torrejonian)

Nacimiento Formation

United States
( New Mexico)

A member of Baenidae.

Notoemys tlaxiacoensis[71]

Sp. nov

Valid[72]

López-Conde et al.

Late Jurassic (Kimmeridgian)

Sabinal Formation

Mexico

A member of Platychelyidae.

Paiutemys[73]

Gen. et sp. nov

Disputed

Joyce, Lyson & Kirkland

Late Cretaceous (late Cenomanian)

Naturita Formation

United States
( Utah)

A member of Bothremydidae. The type species is P. tibert. Pérez-García (2018) considered the genus Paiutemys to be a junior synonym of the genus Algorachelus, and transferred the species P. tibert to the latter genus.[74]

Palaeoamyda[75]

Gen. et comb. nov

Disputed

Cadena

Eocene

Germany

A relative of trionychids; a new genus for "Trionyx" messelianus Reinach (1900). However, Karl (2018) considered Palaeoamyda to be a junior synonym of the genus Rafetoides, and transferred "Trionyx" messelianus to the latter genus.[76]

Pelorochelon[63]

Gen. et sp. et comb. nov

Valid

Pérez-García, Ortega & Jiménez Fuentes

Middle Eocene

Germany
Spain

A tortoise. The type species is P. soriana; genus also includes Pelorochelon eocaenica (Hummel, 1935).

Proterochersis porebensis[66]

Sp. nov

Valid

Szczygielski & Sulej

Late Triassic

Poland

A member of Proterochersidae.

Sichuanchelys palatodentata[77]

Sp. nov

Valid

Joyce et al.

Late Jurassic (Oxfordian)

Shishugou Formation

China

A basal member of Testudinata.

Tartaruscola[78]

Gen. et sp. nov

Valid

Pérez-García

Eocene (Ypresian)

France

A member of Bothremydidae belonging to the group Foxemydina. The type species is T. teodorii.

Yelmochelys[79]

Gen. et sp. nov

Valid

Brinkman et al.

Late Cretaceous (late Campanian and early Maastrichtian)

Cañon del Tule Formation
Cerro del Pueblo Formation

Mexico

A stem-kinosternid. The type species is Yelmochelys rosarioae.

Archosauriformes

[edit]

Other reptiles

[edit]

Research

[edit]
  • A skull of a juvenile specimen of Delorhynchus cifellii is described from the Richards Spur locality (Oklahoma, United States) by Haridy et al. (2016).[80]
  • A revision of the systematics of the Chinese pareiasaurs is published by Benton (2016).[81]
  • A study of evolution of body size of the carnivorous and herbivorous members of Captorhinidae is published by Brocklehurst (2016).[82]
  • Surmik et al. (2016) describe nothosaurid and tanystropheid bones from the Triassic of Poland preserving blood-vessel-like structures enclosing organic molecules.[83]
  • Two new specimens of Atopodentatus unicus are described by Chun et al. (2016), providing new information on the skull anatomy of this species and indicating that its rostrum, rather than being downturned as originally assumed, developed a hammerhead-like shape.[84]
  • Description of new material of Hemilopas mentzeli from the Middle Triassic of Silesia (Poland) and a study of the phylogenetic relationships of the species is published by Surmik (2016).[85]
  • Description of the anatomy of partially articulated forelimbs and isolated forelimb bones of Drepanosaurus recovered from the Late Triassic (Norian) Hayden Quarry (Chinle Formation) of New Mexico, USA is published by Pritchard et al. (2016).[86]
  • A study on the femoral and tibial histology of the rhynchosaur Stenaulorhynchus stockleyi is published by Werning & Nesbitt (2016).[87]
  • A study on the maximum body size and distribution of the reptile species known to have gone extinct during the last 50,000 years, as well as the role played by these factors in recent reptile extinction events, is published by Slavenko et al. (2016).[88]

New taxa

[edit]
Name Novelty Status Authors Age Unit Location Notes Images

Brasinorhynchus[89]

Gen. et sp. nov

Valid

Schultz, Langer & Montefeltro

Middle Triassic (Ladinian)

Santa Maria Formation

Brazil

A rhynchosaur belonging to the group Stenaulorhynchinae. The type species is Brasinorhynchus mariantensis.

Colobomycter vaughni[90]

Sp. nov

Valid

MacDougall, Modesto & Reisz

Early Permian

United States
( Oklahoma)

A member of Lanthanosuchoidea.

Euconcordia[91]

Nom. nov

Valid

Reisz, Haridy & Müller

Carboniferous (Pennsylvanian)

Calhouns Shale

United States
( Kansas)

A member of Captorhinidae; a replacement name for Concordia Müller & Reisz (2005).

Langeronyx[92]

Gen. et comb. nov

Valid

Ezcurra, Montefeltro & Butler

Middle Triassic (Anisian)

Bromsgrove Sandstone Formation

United Kingdom

A rhynchosaur; a new genus for "Rhynchosaurus" brodiei Benton (1990).

Ozimek[93]

Gen. et sp. nov

Valid

Dzik & Sulej

Late Triassic (probably late Carnian)

Poland

A relative of Sharovipteryx. The type species is O. volans.

Teyujagua[94]

Gen. et sp. nov

Valid

Pinheiro et al.

Early Triassic (Induan to early Olenekian)

Sanga do Cabral Formation

Brazil

A member of Archosauromorpha closely related to Archosauriformes. The type species is Teyujagua paradoxa.

Xinpusaurus xingyiensis[95]

Sp. nov

Valid

Li et al.

Middle Triassic (Ladinian)

China

A thalattosaur.

References

[edit]
Add your contribution
Related Hubs