Hubbry Logo
Custody transferCustody transferMain
Open search
Custody transfer
Community hub
Custody transfer
logo
8 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
Custody transfer
Custody transfer
from Wikipedia

Custody transfer in the oil and gas industry refers to the transactions involving the handover of a physical substance from one operator to another. This includes the transferring of raw and refined petroleum between tanks and railway tank cars; onto ships, and other transactions. Custody transfer in fluid measurement is defined as a metering point (location) where the fluid is being measured for sale from one party to another. During custody transfer, accuracy is of great importance to both the company delivering the material and the eventual recipient, when transferring a material.[1]

The term "fiscal metering" is often interchanged with custody transfer, and refers to metering that is a point of a commercial transaction such as when a change in ownership takes place. Custody transfer takes place any time fluids are passed from the possession of one party to another.[2] The use of the phrase "fiscal metering" does not necessary imply any single expectation of the quality of the instrumentation to be installed. "Fiscal" refers to the meter's service, not its quality. "Fiscal" usually means ‘concerned with government finance’.

Custody transfer generally involves:

  • Industry standards;
  • National metrology standards;
  • Contractual agreements between custody transfer parties; and
  • Government regulation and taxation.

Due to the high level of accuracy required during custody transfer applications, the flowmeters which are used to perform this are subject to approval by an organization such as the American Petroleum Institute (API). Custody transfer operations can occur at a number of points along the way; these may include operations, transactions or transferring of oil from an oil production platform to a ship, barge, railcar, truck and also to the final destination point, such as a refinery.

To complete standards and/or agreements and achieve maximum accuracy all parties included in fuel distribution processes (sellers and buyers, transport & storage services, fiscal departments) must follow the custody transfer procedures, appropriate measurements and related documenting operations must be fully implemented. Custody transfer measurements involve measurements in pipelines, storage tanks, transportation tanks (tankers, trailers or railway tanks) - whole fuel distribution process must be traceable. In order measurements can be made in a volume or mass units (or both), so various metering methods are commonly used.[3]

Capacity table for horizontal cylindrical storage tank[4]
Capacity tables and its changes due to inclination of a tank[4]
Demonstration of a volume table for vertical cylindrical tank and the difference for capacity table for various densities[4]

Current volume of a product stored in a tank can be calculated using a tank capacity table (sometimes called "tank calibration table") and current levels and temperatures of a product in a tank. Tank capacity table stores data about level and appropriate volume in a tank and have a very high impact on overall accuracy of volume calculation. Typical accuracy of a capacity tables for custody transfer operations is 0.05..0.1%. Initial installation of a tank, its accuracy and lifecycle changes (like inclination or sediments) affect the accuracy of the capacity table so they must be revised periodically. Some capacity tables are multidimensional and store additional data - like heel and trim for ships tanks density of stored products and/or are used in systems for automated volume/mass calculations.

Metering methods

[edit]

Custody transfer is one of the most important applications for flow measurement. Many flow measurement technologies are used for custody transfer applications; these include differential pressure (DP) flowmeters, turbine flowmeters, positive displacement flowmeters, Coriolis flowmeters and ultrasonic flowmeters.[5]

Differential pressure flowmeters

[edit]

Differential pressure (DP) flowmeters are used for the custody transfer of liquid and gas to measure the flow of liquid, gas, and steam. The DP flowmeter consist of a differential pressure transmitter and a primary element. The primary element places a constriction in a flow stream, while the DP transmitter measures the difference in pressure upstream and downstream of the constriction.

In many cases, pressure transmitters and primary elements are bought by the end-users from different suppliers. However, several vendors have integrated the pressure transmitter with the primary element to form a complete flowmeter. The advantage of this is that they can be calibrated with the primary element and DP transmitter already in place.[6]

Standards and criteria for the use of DP flowmeters for custody transfer applications are specified by the American Gas Association (AGA) and the American Petroleum Institute (API).

An advantage of using a DP flowmeters is that they are the most studied and best understood type of flowmeter. A disadvantage of using a DP flowmeters is that they introduce a pressure drop into the flowmeter line. This is a necessary result of the constriction in the line that is required to make the DP flow measurement.[7]

One important development in the use of DP flowmeters for custody transfer applications has been the development of single and dual chamber orifice fittings.

Turbine flowmeters

[edit]

The first turbine flowmeter was invented by Reinhard Woltman, a German engineer in 1790. Turbine flowmeters consist of a rotor with propeller-like blades that spins as water or some other fluid passes over it. The rotor spins in proportion to flow rate (see turbine meters) . There are many types of turbine meters, but many of those used for gas flow are called axial meters.[8]

The turbine flowmeter is most useful when measuring clean, steady, high-speed flow of low-viscosity fluids. In comparison to other flowmeters, the turbine flowmeter has a significant cost advantage over ultrasonic flowmeters, especially in the larger line sizes, and it also has a favourable price compared to the prices of DP flowmeters, especially in cases where one turbine meter can replace several DP meters.

The disadvantage of turbine flowmeters is that they have moving parts that are subject to wear. To prevent wear and inaccuracy, durable materials are used, including ceramic ball bearings.

Positive displacement flowmeters

[edit]

Positive displacement (PD) flowmeters are highly accurate meters that are widely used for custody transfer of commercial and industrial water, as well as for custody transfer of many other liquids. PD flowmeters have the advantage that they have been approved by a number of regulatory bodies for this purpose, and they have not yet been displaced by other applications.[9]

PD meters excel at measuring low flows, and also at measuring highly viscous flows, because PD meters captures the flow in a container of known volume. Speed of flow doesn't matter when using a PD meter.

Coriolis flowmeters

[edit]

Coriolis flowmeters have been around for more than 30 years and are preferred in process industries such as chemical and food and beverage.[10] Coriolis technology offers accuracy and reliability in measuring material flow, and is often considered[by whom?] among the best flow measurement technologies due to direct mass flow, fluid density, temperature, and precise calculated volume flow rates. Coriolis meters do not have any moving parts and provide long term stability, repeatability, and reliability. Because they are direct mass flow measurement devices, Coriolis meters can handle the widest range of fluids from gases to heavy liquids and are not impacted by viscosity or density changes that often affect velocity based technologies (PD, turbine, ultrasonic). With the widest flow range capability of any flow technology, Coriolis can be sized for low pressure drop. This combined with the fact that they are not flow profile dependent helps eliminate the need for straight runs and flow conditioning which enables custody transfer systems to be designed with minimal pressure drop.

Any measurement instrument that relies on one measurement principle only will show a higher measurement uncertainty under two-phase flow conditions. Conventional measurement principles, like positive displacement, turbine meters, orifice plates will seemingly continue to measure, but will not be able to inform the user about the occurrence of two-phase flow. Modern principles based on the Coriolis effect or ultrasonic flow measurement will inform the user by means of diagnostic functions.

Flow is measured using Coriolis meters by analyzing the changes in the Coriolis force of a flowing substance. The force is generated in a mass moving within a rotating frame of reference. An angular, outward acceleration, which is factored with linear velocity is produced due to the rotation. With a fluid mass, the Coriolis force is proportional to the mass flow rate of that fluid.

A Coriolis meter has two main components: an oscillating flow tube equipped with sensors and drivers, and an electronic transmitter that controls the oscillations, analyzes the results, and transmits the information. The Coriolis principle for flow measurement requires the oscillating section of a rotating pipe to be exploited. Oscillation produces the Coriolis force, which traditionally is sensed and analyzed to determine the rate of flow. Modern coriolis meters utilize the phase difference measured at each end of the oscillating pipe.[11]

Ultrasonic flowmeters

[edit]

Ultrasonic flowmeters were first introduced into industrial markets in 1963 by Tokyo Keiki (now Tokimec) in Japan. Custody transfer measurements have been around for a long time, and over the past ten years, Coriolis and ultrasonic meters have become the flowmeters of choice for custody transfer in the oil and gas industry.

Ultrasonic meters provide volumetric flow rate. They typically use the transit-time method, where sounds waves transmitted in the direction of fluid flow travel faster than those travelling upstream. The transit time difference is proportional to fluid velocity. Ultrasonic flow meters have negligible pressure drop if recommended installation is followed, have high turndown capability, and can handle a wide range of applications. Crude oil production, transportation, and processing are typical applications for this technology.

The use of ultrasonic flowmeters is continuing to grow for custody transfer. Unlike PD and turbine meters, ultrasonic flowmeters do not have moving parts. Pressure drop is much reduced with an ultrasonic meter when compared to PD, turbine, and DP meters. Installation of ultrasonic meters is relatively straightforward, and maintenance requirements are low.

In June 1998, the American Gas Association published a standard called AGA-9. This standard lays out the criteria for the use of ultrasonic flowmeters for Custody Transfer of Natural Gas.[12]

Components

[edit]

Custody transfer requires an entire metering system that is designed and engineered for the application, not just flowmeters. Components of a custody transfer system typically include:

  • Multiple meters/meter runs;
  • Flow computers;
  • Quality systems (gas chromatographs to measure energy content of natural gas and sampling systems for liquid);
  • Calibration using in-place or mobile provers for liquid, or master-meter for liquid or gas; and
  • Supporting automation.

A typical liquid custody transfer skid includes multiple flowmeters and meter provers. Provers are used to calibrate meters in-situ and are performed frequently; typically before, during, and after a batch transfer for metering assurance. A good example of this is a Lease Automatic Custody Transfer (LACT) unit in a crude oil production facility.

Accuracy

[edit]

In the ISO 5725-1 standard accuracy for measuring instruments is defined as “the closeness of agreement between a test result and the accepted reference value”. This term “accuracy” includes both the systematic error and the bias component.[13] Each device has its manufacturer stated accuracy specification and its tested accuracy. Uncertainty takes all the metering system factors that impact measurement accuracy into account. The accuracy of flowmeters could be used in two different metering systems that ultimately have different calculated uncertainties due to other factors in the system that affect flow calculations. Uncertainty even includes such factors as the flow computer's A/D converter accuracy. The quest for accuracy in a custody transfer system requires meticulous attention to detail.

Custody transfer requirements

[edit]

Custody transfer metering systems must meet requirements set by industry bodies such as AGA, API, or ISO, and national metrology standards such as OIML (International), NIST (U.S.), PTB (Germany), CMC (China), and GOST (Russia), DSTU (Ukraine) among others. These requirements can be of two types: legal and contract.

[edit]

The national Weights & Measures codes and regulations control the wholesale and retail trade requirements to facilitate fair trade. The regulations and accuracy requirements vary widely between countries and commodities, but they all have one common characteristic, traceability. There is always a procedure that defines the validation process where the duty meter is compared to a standard that is traceable to the legal metrology agency of the respective region.[14]

Contract

[edit]

A contract is a written agreement between buyers and sellers that defines the measurement requirements. These are large-volume sales between operating companies where refined products and crude oils are transported by marine, pipeline or rail. Custody transfer measurement must be at the highest level of accuracy possible because a small error in measurement can amount to a large financial difference. Due to these critical natures of measurements, petroleum companies around the world have developed and adopted standards to meet the industry's needs.

In Canada, for instance, all measurement of a custody transfer nature falls under the purview of Measurement Canada. In the US, the Federal Energy Regulatory Commission (FERC) controls the standards which must be met for interstate trade.

Liquid custody transfer

[edit]

Custody transfer of liquid flow measurement follow guidelines set by the ISO. By industrial consensus, liquid flow measurement is defined as having an overall uncertainty of ±0.25% or better. The overall uncertainty is derived from an appropriate statistical combination of the component uncertainties in the measurement system.

Mode of measurement

[edit]

Volume or mass measurement

[edit]

Liquid flow measurements are usually in volumetric or mass unit. Volume is normally used for stand-alone field tanker loading operations, while mass is used for multi-field pipeline or offshore pipeline with an allocation requirement.

Mass measurement and reporting are achieved by

  • Measurement of volume flow rate (for example, by turbine or ultrasonic meter) and fluid density
  • Direct mass measurement by Coriolis meter

Sampling system

[edit]

An automatic flow-proportional sampling system is used in flow measurement to determine the average water content, average density and for analysis purposes. Sampling systems should be broadly in accordance with ISO 3171. The sampling system is a critical section during flow measurement. Any errors introduced through sampling error will generally have a direct, linear effect on the overall measurement.

Temperature and pressure measurement

[edit]

Temperature and pressure measurement are important factors to consider when taking flow measurements of liquids. Temperature and pressure measurement points should be situated as close to the meter as possible, in reference to their conditions at the meter inlet. Temperature measurements that affect the accuracy of the metering system should have an overall loop accuracy of 0.5 °C or better, and the corresponding readout should have a resolution of 0.2 °C or better.

Temperature checks are performed by certified thermometers with the aid of thermowells.

Pressure measurements that affect the accuracy of the metering system should have an overall loop accuracy of 0.5 bar or better and the corresponding readout should have a resolution of 0.1 bar or better.

Gaseous custody transfer

[edit]

Custody transfer of gaseous flow measurement follow guidelines set by the international bodies. By industrial consensus, gaseous flow measurement is defined as mass flow measurement with an overall uncertainty of ±1.0% or better. The overall uncertainty is derived from an appropriate statistical combination of the component uncertainties in the measurement system.

Mode of measurement

[edit]

Volume or mass unit

[edit]

All gaseous flow measurement must be made on single-phase gas streams, having measurements in either volumetric or mass units.

Sampling

[edit]

Sampling is an important aspect, as they help to ascertain accuracy. Apt facilities should be provided for the purpose of obtaining representative samples. The type of instrumentation and the measuring system may influence this requirement.

Gas density

[edit]

Gas density at the meter may be determined either by:

  • Continuous direct measurement, by on-line densitometer
  • Calculation, using a recognised equation of state together with measurements of the gas temperature, pressure and composition.

Most industries prefer to use the continuous measurement of gas density. However, both methods may be used simultaneously, and the comparison of their respective results may provide additional confidence in the accuracy of each method.

Best practices

[edit]

In any custody transfer application, a true random uncertainty has an equal chance of favouring either party, the net impact should be zero to both parties, and measurement accuracy and repeatability should not be valued. Measurement accuracy and repeatability are of high value to most seller because many users install check meters. The first step in designing any custody transfer system is to determine the mutual measurement performance expectations of the supplier and the user over the range of flow rates. This determination of mutual performance expectations should be made by individuals who have a clear understanding of all of the costs of measurement disputes caused by poor repeatability. The second step is to quantify the operating conditions which are not controllable. For a flow measurement, these can include:

  • Expected ambient temperature variation;
  • Maximum static line pressure;
  • Static line pressure and temperature variation;
  • Maximum allowable permanent pressure loss;
  • Flow turndown; and
  • Expected frequency of flow variation and/or pulsation.

The third and final step is to select hardware, installation and maintenance procedures which will ensure that the measurement provides the required installed performance under the expected (uncontrollable) operating conditions. For example, the user can:

  • Select a static and/or differential pressure transmitter which has better or worse performance under the given real-world operating conditions.
  • Calibrate the transmitter(s) frequently or infrequently.
  • In the case of a DP flowmeter, size the primary element for a higher or lower differential pressure (higher DP's provide higher accuracy, at the expense of higher pressure loss).
  • Select a flowmeter and pressure transmitter with faster or slower response.
  • Use long or short interconnection (impulse) lines, or direct connect for fastest response.

While the first and second steps involve gathering data, the third step may require calculations and/or testing.[15]

General formula for calculating energy transferred (LNG)

[edit]

The formula for calculating the LNG transferred depends on the contractual sales conditions. These can relate to three types of sale contract as defined by Incoterms 2000: an FOB sale, a CIF sale or a DES sale.

In the case of an FOB (Free On Board) sale, the determination of the energy transferred and invoiced for will be made in the loading port.

In the case of a CIF (Cost Insurance & Freight) or a DES (Delivered Ex Ship) sale, the energy transferred and invoiced for will be determined in the unloading port.

In FOB contracts, the buyer is responsible to provide and maintain the custody transfer measurement systems on board the vessel for volume, temperature and pressure determination and the seller is responsible to provide and maintain the custody transfer measurement systems at the loading terminal such as the sampling and gas analysis. For CIF and DES contracts the responsibility is reversed.

Both buyer and seller have the right to verify the accuracy of each system that is provided, maintained and operated by the other party. The determination of the transferred energy usually happens in the presence of one or more surveyors, the ship's cargo officer and a representative of the LNG terminal operator. A representative of the buyer can also be present.[16]

In all cases, the transferred energy can be calculated with the following formula:

E =(VLNG × DLNG × GVCLNG) - Egas displaced ± Egas to ER (if applicable)

Where:

E = the total net energy transferred from the loading facilities to the LNG carrier, or from the LNG carrier to the unloading facilities.

VLNG= the volume of LNG loaded or unloaded in m3.

DLNG = the density of LNG loaded or unloaded in kg/m3.

GCVLNG = the gross calorific value of the LNG loaded or unloaded in million BTU/kg

E gas displaced = The net energy of the displaced gas, also in million BTU, which is either: sent back onshore by the LNG carrier when loading (volume of gas in cargo tanks displaced by same volume of loaded LNG), Or, gas received by the LNG carrier in its cargo tanks when unloading in replacement of the volume of discharged LNG.

E(gas to ER) = If applicable, the energy of the gas consumed in the LNG carrier's engine room during the time between opening and closing custody transfer surveys, i.e. used by the vessel at the port, which is:

+ For an LNG loading transfer or

- For an LNG unloading transfer

See also

[edit]

References

[edit]
[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
from Grokipedia
Custody transfer, also known as fiscal metering, is the process in the oil and gas industry where the ownership of fluids or gases—such as crude oil, refined petroleum products, and —transfers from one party to another through precise at designated metering points. These transfers occur at key locations, including wellsites to pipelines, pipelines to storage facilities, or cargo ships to refineries, ensuring accurate quantification of volume and quality for financial transactions. The significance of custody transfer lies in its role in preventing financial disputes and losses, as even minor measurement inaccuracies—such as 0.1%—can result in substantial daily costs for large-scale operations involving millions of barrels or cubic meters. For instance, a 1% discrepancy in measuring 500,000 barrels of crude could result in a significant financial loss for either the buyer or seller, underscoring the need for high , , and compliance with legal requirements. Payments and taxation are directly tied to these measurements, making the process a critical junction for and regulatory oversight, often involving independent verification by both parties using separate instruments. Technologies employed in custody transfer metering prioritize precision and reliability, including ultrasonic flow meters, Coriolis mass flow meters, and turbine meters, which measure flow rates, temperature, pressure, and fluid quality in real time. These systems must adhere to international and national standards, such as the (OIML) R117 for dynamic measuring systems of liquids other than water, and the (API) Manual of Petroleum Measurement Standards (MPMS), particularly Chapter 5.8 for ultrasonic meters. In regions like the , oversight by bodies such as the (FERC) further enforces these protocols to maintain integrity across global supply chains.

Fundamentals

Definition and Principles

Custody transfer refers to the process by which the physical possession and legal ownership of liquids or gases, such as crude oil, , or (LNG), are transferred from one party to another, typically involving precise to quantify the volume or for determining commercial value. This transaction, often synonymous with fiscal metering, ensures that payment is based on the accurately assessed quantity of the exchanged between buyers and sellers. The core objective is to establish a verifiable record at the point of handover, minimizing financial discrepancies in high-value trades. The underlying principles of custody transfer are rooted in fundamental physical laws, including the and energy, which underpin the metering processes to maintain consistency in quantity assessments across transfers. Measurements must demonstrate metrological to international standards, such as the (SI), through an unbroken chain of calibrations linking local instruments to primary references, ensuring global comparability and reliability. Fiscal metering plays a critical role in preventing disputes by providing impartial, auditable data that supports equitable valuation and compliance with trade agreements. Custody transfer emerged in the alongside the standardization of oil trade, as the grew from manual barrel measurements to more systematic quantification methods to facilitate expanding commercial exchanges. In its basic , the process spans from extraction or through transportation—via pipelines, tankers, or trucks—to delivery at the receiving facility, with the "point of transfer" serving as a defined metered boundary where legally shifts. This structured handover is essential in sectors like oil and gas, where it underpins billions in annual transactions.

Importance and Applications

Custody transfer plays a pivotal role in the and gas industry, where it underpins high-value transactions involving the handover of hydrocarbons between parties, ensuring accurate quantification to prevent financial disputes. The economic stakes are substantial, as even minor inaccuracies can result in significant losses; for instance, a 0.1% error in crude at a flow rate of approximately 2 million barrels per day equates to an over- or under-measurement of 2,057 barrels daily, costing approximately $216,000 per day at a $105 per barrel spot price, or over $78 million annually. Globally, these transactions contribute to billions in annual revenue, with the and gas custody metering systems market alone valued at $11.2 billion in 2024 and projected to grow due to increasing demand for precise in energy trade. In the sector, for example, a 0.1% across annual production equates to about $90 million in potential revenue impact (as of 2012). Key applications of custody transfer span the energy value chain, including upstream operations for wellhead allocation and production monitoring, midstream for pipeline and transportation handoffs, and downstream for refinery intake and distribution. In upstream settings, it facilitates accurate allocation of output from individual wells to partners or for fiscal reporting. Midstream uses ensure reliable transfers during storage, processing, and transport, such as at compressor stations or loading facilities. Downstream applications support inventory management and quality assurance at terminals and refineries, while non-fiscal uses extend to process control for optimizing operations and reducing lost and unaccounted-for volumes. Custody transfer is also critical at LNG terminals, where it verifies liquefied volumes during loading and unloading to maintain contractual integrity. In the petroleum sector, custody transfer is exemplified by crude oil handoffs at ports, where tankers deliver to onshore storage, enabling precise billing and compliance. For , it occurs at handoffs, measuring flow to determine volumes sold between producers and transporters. In the chemicals industry, similar principles apply to bulk liquid transfers, such as from production facilities to distributors, ensuring accountability for high-value commodities like solvents or polymers. On a global scale, custody transfer metering is regulated by authoritative bodies including the (API) through standards like MPMS Chapter 5.8 for ultrasonic flow meters, and the (ISO) via ISO 17089-1 for ultrasonic meters in closed conduits, which emphasize class 1 and 2 accuracy for fiscal applications. These frameworks support the vast majority of international , where metering ensures transparency and trust in transactions exceeding trillions in value annually, with over 90% of seaborne crude oil movements relying on such verified systems.

Regulatory and Contractual Aspects

Custody transfer operations are governed by international standards that ensure measurement accuracy and fairness in the trade of hydrocarbons. The (OIML) Recommendation R 117 establishes requirements for dynamic measuring systems used in the custody transfer of liquids other than , including hydrocarbon liquids and liquefied gases such as LPG, specifying accuracy classes such as 0.3 for high-precision applications to guarantee verifiable and traceable measurements. Similarly, ISO 5168 provides procedures for evaluating uncertainties in fluid flow measurements, which is essential for custody transfer to quantify and minimize errors in volumetric or mass determinations. In the United States, the (API) Manual of Petroleum Measurement Standards (MPMS) outlines detailed protocols for custody transfer of liquids and fluids, emphasizing , proving, and reporting to maintain integrity, with enforcement supported by the National Institute of Standards and Technology (NIST) for metrological traceability. In the , Directive 2014/32/EU on measuring instruments (MID) mandates conformity assessments, accuracy thresholds, and legal verification for devices used in commercial transactions, including custody transfer metering systems. Among member countries, Saudi Arabia's SAES-Y-101 standard regulates the design, installation, and operation of custody metering stations for gases, aligning with international norms for fiscal accuracy. Nigeria's Upstream Measurement Regulations similarly require certified metering equipment and periodic verification for production allocation and custody transfer. Non-compliance with these regulations can result in significant actions, including civil penalties that can reach up to $1,393 per day for initial violations of rules, escalating to higher amounts such as $69,635 per day for knowing or continued violations, as adjusted for under U.S. federal rules (43 CFR § 3163.2, as of 2024), as well as potential trade restrictions or contract terminations in international contexts. To uphold standards, third-party audits are mandated, involving independent verification of metering systems, records, and performance data to ensure ongoing compliance and . Post-2020 developments have integrated digital metering and cybersecurity into legal frameworks, with updates like the U.S. (TSA) directives requiring cybersecurity plans for critical pipeline infrastructure, including digital systems, to protect against tampering that could compromise custody transfer integrity. These requirements tie directly into contractual specifications, where parties must demonstrate adherence to ensure enforceable agreements.

Contractual Specifications

Contracts in custody transfer outline the specific terms under which ownership of hydrocarbons or other fluids transfers between buyers and sellers, with a strong emphasis on protocols to ensure accurate quantification of , , and content. These agreements typically define the metering point , often at the flange of the loading arm or ship manifold during loading or unloading operations, aligned with such as FOB (Free on Board) or (Cost, Insurance, and Freight). For instance, in LNG transfers, the metering point is positioned on the main loading or unloading pipe to capture sub-cooled fluid near the custody transfer boundary. Responsibility allocation is a core contract element, delineating duties for measurement systems between parties; under FOB terms, the buyer oversees ship-based measurements like volume, temperature, and pressure, while the seller manages terminal-side sampling and analysis, with roles reversing for CIF arrangements. The seller typically bears the onus of proving meter accuracy through and testing, though both parties retain verification rights to foster mutual trust. Dispute resolution clauses commonly mandate good-faith negotiations, followed by escalation to legal remedies if needed, and often involve retaining gas or fluid samples for a contract-specified period—such as several weeks—to facilitate independent investigation. Common specifications include tolerance bands for measurement accuracy, such as ±0.25% overall for custody transfers and similar thresholds for to minimize financial discrepancies. Independent verification by a neutral third-party surveyor is standard, encompassing checks for instruments like chromatographs and gauges, with master meters required to achieve four times the accuracy of operational ones. provisions address measurement failures due to unforeseen events, allowing agreed-upon contingencies like secondary gauges or alternative protocols to prevent default. These elements align briefly with broader legal standards for fiscal metering. Negotiation aspects focus on selecting base measurement methods—such as tank gauging for LNG—versus alternatives like in-line flow metering for smaller-scale operations, alongside cost-sharing arrangements for equipment installation, , and surveyor fees. Parties often debate calibration frequency, quality estimation techniques (e.g., incorporating ageing factors), and adjustments for boil-off gas in energy calculations to balance operational feasibility and precision. Standard contracts provide templates for these specifications; the GIIGNL LNG Custody Transfer Handbook outlines protocols for LNG, including energy transfer formulas like E = V_LNG × D_LNG × GCV_LNG adjusted for displaced gas, with rounding to six significant digits. For trades, the ISDA North American Gas Annex specifies measurement in MMBtu at delivery points, emphasizing compliance with transporter quality and pressure requirements during title transfer.

Measurement Systems Overview

Core Components

Custody transfer metering systems rely on a suite of primary hardware elements to ensure precise measurement and control during the transfer of hydrocarbons or other fluids between parties. At the core are flowmeters, which quantify the volume or mass of the fluid passing through the system, often integrated with provers such as master meters or volumetric provers to verify meter accuracy in situ. Shut-off valves, typically configured as double block and bleed assemblies, facilitate safe isolation and prevent bypass errors during proving operations. Data acquisition systems, including flow computers and Supervisory Control and Data Acquisition (SCADA) integrations, collect and process signals from sensors to compute flow rates and totals in real time. Auxiliary components support the reliability and of these primary elements by mitigating operational risks. Filters and strainers remove contaminants and entrained gases that could introduce metering errors, ensuring clean flow through the system. relief devices protect against overpressure conditions, while tamper-proof seals secure critical junctions to prevent unauthorized access or manipulation. These elements collectively maintain system performance under varying process conditions. Software plays a pivotal role in managing custody transfer operations beyond hardware. It enables real-time monitoring of flow parameters, issuing alerts for anomalies via diagnostic tools integrated with flow computers. Automated reporting generates standardized calculations for transfer quantities, compliant with industry protocols, and facilitates integration with (ERP) systems for seamless billing and inventory management. System integration emphasizes redundancy to achieve , such as dual metering runs and flow computers, ensuring uninterrupted measurement during maintenance or failures. These configurations support the overall goal of meeting stringent accuracy targets in fiscal transfers.

Accuracy and Uncertainty

In custody transfer metering, accuracy refers to the closeness of the agreement between the result of a and the true value of the measurand, while quantifies the dispersion of values that could reasonably be attributed to the measurand, typically expressed as an expanded uncertainty U=kucU = k \cdot u_c, where ucu_c is the combined standard uncertainty and k=2k = 2 provides approximately 95% coverage. These concepts are foundational to ensuring reliable fiscal measurements in fluid transfers, such as and , where even small deviations can lead to significant financial implications. Sources of error in custody transfer systems are categorized as systematic or random. Systematic errors arise from identifiable biases, such as drift, installation effects, or deviations in and that alter flow conditions, whereas random errors stem from unpredictable variations like flow turbulence or noise. For fiscal metering applications, typical uncertainty targets range from ±0.15% to ±0.5% of the measured value to minimize economic , though values up to ±1% may be acceptable depending on the and type. Traceability ensures measurement reliability by establishing an unbroken chain from the custody transfer meter to national metrology institutes, such as NIST , through accredited laboratories using standards like gravimetric or master meter methods. Uncertainty budgets, as outlined in the Guide to the Expression of Uncertainty in Measurement (), systematically combine contributions from all sources—such as flow rate, , , and —via root-sum-square methods, accounting for correlations to yield the overall ucu_c. Key performance metrics for assessing accuracy include , which measures the closeness of successive measurements under identical conditions and is typically targeted at ≤0.2% to ≤0.5% standard deviation; , evaluating consistent performance across the flow range, often within ±0.5% to ±1.0%; and proving intervals, during which meters are verified against reference standards, with frequency determined by performance criteria, regulations, and contracts, often every few months or based on meter drift thresholds as per API MPMS Chapter 4. These metrics, aligned with standards like API MPMS Chapter 4, help maintain system integrity over time.

Metering Technologies

Differential Pressure Flowmeters

Differential pressure flowmeters measure fluid flow by creating a constriction in the pipe that causes a pressure drop, which is then used to calculate the flow rate based on Bernoulli's principle of conservation of energy. This principle states that an increase in fluid velocity through the restriction results in a corresponding decrease in pressure, with the differential pressure ΔP\Delta P directly related to the flow velocity. Common primary elements include orifice plates, venturi tubes, and flow nozzles, each designed to produce a measurable pressure differential while minimizing permanent energy loss. The volumetric flow rate QQ is calculated using the formula Q=CA2ΔPρQ = C A \sqrt{\frac{2 \Delta P}{\rho}}
Add your contribution
Related Hubs
User Avatar
No comments yet.