Hubbry Logo
search button
Sign in
Gaussian q-distribution
Gaussian q-distribution
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Gaussian q-distribution
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Gaussian q-distribution Wikipedia article. Here, you can discuss, collect, and organize anything related to Gaussian q-distribution. The purpose of the hub...
Add your contribution
Gaussian q-distribution

In mathematical physics and probability and statistics, the Gaussian q-distribution is a family of probability distributions that includes, as limiting cases, the uniform distribution and the normal (Gaussian) distribution. It was introduced by Diaz and Teruel.[clarification needed] It is a q-analog of the Gaussian or normal distribution.

The distribution is symmetric about zero and is bounded, except for the limiting case of the normal distribution. The limiting uniform distribution is on the range -1 to +1.

Definition

[edit]
The Gaussian q-density.

Let q be a real number in the interval [0, 1). The probability density function of the Gaussian q-distribution is given by

where

The q-analogue [t]q of the real number is given by

The q-analogue of the exponential function is the q-exponential, Ex
q
, which is given by

where the q-analogue of the factorial is the q-factorial, [n]q!, which is in turn given by

for an integer n > 2 and [1]q! = [0]q! = 1.

The Cumulative Gaussian q-distribution.

The cumulative distribution function of the Gaussian q-distribution is given by

where the integration symbol denotes the Jackson integral.

The function Gq is given explicitly by

where

Moments

[edit]

The moments of the Gaussian q-distribution are given by

where the symbol [2n − 1]!! is the q-analogue of the double factorial given by

See also

[edit]

References

[edit]
  • Díaz, R.; Pariguan, E. (2009). "On the Gaussian q-distribution". Journal of Mathematical Analysis and Applications. 358: 1–9. arXiv:0807.1918. doi:10.1016/j.jmaa.2009.04.046. S2CID 115175228.
  • Diaz, R.; Teruel, C. (2005). "q,k-Generalized Gamma and Beta Functions" (PDF). Journal of Nonlinear Mathematical Physics. 12 (1): 118–134. arXiv:math/0405402. Bibcode:2005JNMP...12..118D. doi:10.2991/jnmp.2005.12.1.10. S2CID 73643153.
  • van Leeuwen, H.; Maassen, H. (1995). "A q deformation of the Gauss distribution" (PDF). Journal of Mathematical Physics. 36 (9): 4743. Bibcode:1995JMP....36.4743V. CiteSeerX 10.1.1.24.6957. doi:10.1063/1.530917. hdl:2066/141604. S2CID 13934946.
  • Exton, H. (1983), q-Hypergeometric Functions and Applications, New York: Halstead Press, Chichester: Ellis Horwood, 1983, ISBN 0853124914, ISBN 0470274530, ISBN 978-0470274538