Welcome to the community hub built on top of the Lithium nitride Wikipedia article.
Here, you can discuss, collect, and organize anything related to Lithium nitride. The
purpose of the hub is to connect p...
alpha-Li3N (stable at room temperature and pressure) has an unusual crystal structure that consists of two types of layers: one layer has the composition Li2N− contains 6-coordinate N centers and the other layer consists only of lithium cations.[3]
Two other forms are known:
beta-Li3N, formed from the alpha phase at 0.42 GPa has the sodium arsenide (Na3As) structure;
gamma-Li3N (same structure as lithium bismuthide Li3Bi) forms from the beta form at 35 to 45 GPa.[4]
Lithium nitride shows ionic conductivity for Li+, with a value of c. 2×10−4 Ω−1cm−1, and an (intracrystal) activation energy of c. 0.26 eV (c. 24 kJ/mol). Hydrogendoping increases conductivity, whilst doping with metal ions (Al, Cu, Mg) reduces it.[5][6] The activation energy for lithium transfer across lithium nitride crystals (intercrystalline) has been determined to be higher, at c. 68.5 kJ/mol.[7] The alpha form is a semiconductor with band gap of c. 2.1 eV.[4]
Under hydrogen at around 200°C, Li3N will react to form lithium amide.[10]
Li3N + 2 H2 → 2LiH + LiNH2
At higher temperatures it will react further to form ammonia and lithium hydride.
LiNH2 + H2 → LiH + NH3
Lithium imide can also be formed under certain conditions. Some research has explored this as a possible industrial process to produce ammonia since lithium hydride can be thermally decomposed back to lithium metal.
Lithium nitride has been investigated as a storage medium for hydrogen gas, as the reaction is reversible at 270 °C. Up to 11.5% by weight absorption of hydrogen has been achieved.[11]
^E. Döneges "Lithium Nitride" in Handbook of Preparative Inorganic Chemistry, 2nd Ed. Edited by G. Brauer, Academic Press, 1963, New York. Vol. 1. p. 984.
^Barker M. G.; Blake A. J.; Edwards P. P.; Gregory D. H.; Hamor T. A.; Siddons D. J.; Smith S. E. (1999). "Novel layered lithium nitridonickelates; effect of Li vacancy concentration on N co-ordination geometry and Ni oxidation state". Chemical Communications (13): 1187–1188. doi:10.1039/a902962a.
^ abWalker, G, ed. (2008). Solid-State Hydrogen Storage: Materials and Chemistry. §16.2.1 Lithium nitride and hydrogen:a historical perspective.
^Lapp, Torben; Skaarup, Steen; Hooper, Alan (October 1983). "Ionic conductivity of pure and doped Li3N". Solid State Ionics. 11 (2): 97–103. doi:10.1016/0167-2738(83)90045-0.
^Boukamp, B. A.; Huggins, R. A. (January 1978). "Fast ionic conductivity in lithium nitride". Materials Research Bulletin. 13 (1): 23–32. doi:10.1016/0025-5408(78)90023-5.
^Yun Hang Hu, Yan Huo (12 September 2011). "Fast and Exothermic Reaction of CO2 and Li3N into C–N-Containing Solid Materials". The Journal of Physical Chemistry A. 115 (42). The Journal of Physical Chemistry A 115 (42), 11678-11681: 11678–11681. Bibcode:2011JPCA..11511678H. doi:10.1021/jp205499e. PMID21910502.