Hubbry Logo
KCNK2KCNK2Main
Open search
KCNK2
Community hub
KCNK2
logo
8 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
KCNK2
from Wikipedia

KCNK2
Available structures
PDBOrtholog search: PDBe RCSB
Identifiers
AliasesKCNK2, K2p2.1, TPKC1, TREK, TREK-1, TREK1, hTREK-1c, hTREK-1e, potassium two pore domain channel subfamily K member 2
External IDsOMIM: 603219; MGI: 109366; HomoloGene: 7794; GeneCards: KCNK2; OMA:KCNK2 - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_001017424
NM_001017425
NM_014217

NM_001159850
NM_001281847
NM_001281848
NM_010607
NM_001357119

RefSeq (protein)

NP_001017424
NP_001017425
NP_055032

Location (UCSC)Chr 1: 215.01 – 215.24 MbChr 1: 188.94 – 189.13 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Potassium channel subfamily K member 2, also known as TREK-1, is a protein that in humans is encoded by the KCNK2 gene.[5][6][7]

This gene encodes K2P2.1, a lipid-gated ion channel belonging to the two-pore-domain background potassium channel protein family. This type of potassium channel is formed by two homodimers that create a channel that releases potassium out of the cell to control resting membrane potential. The channel is opened by anionic lipid, certain anesthetics, membrane stretching, intracellular acidosis, and heat. Three transcript variants encoding different isoforms have been found for this gene.[7]

Function in neurons

[edit]

TREK-1 is part of the subfamily of mechano-gated potassium channels that are present in mammalian neurons. They can be gated in both chemical and physical ways and can be opened via both physical stimuli and chemical stimuli. TREK-1 channels are found in a variety of tissues, but are particularly abundant in the brain and heart and are seen in various types of neurons.[8] The C-terminal of TREK-1 channels plays a role in the mechanosensitivity of the channels.[9]

In the neurons of the central nervous system, TREK-1 channels are important in physiological, pathophysiological, and pharmacological processes, including having a role in electrogenesis, ischemia, and anesthesia. TREK-1 has an important role in neuroprotection against epilepsy and brain and spinal cord ischemia and is being evaluated as a potential target for new developments of therapeutic agents for neurology and anesthesiology.[10]

In the absence of a properly functioning cytoskeleton, TREK-1 channels can still open via mechanical gating.[9] The cell membrane functions independently of the cytoskeleton and the thickness and curvature of the membrane is able to modulate the activity of the TREK-1 channels.[11] The change in thickness is thought to be sensed by an amphipathic helix that extends from the inner leaflet of the membrane.[12]

The insertion of certain compounds into the membrane, including inhaled anesthetics and propofol, activate TREK-1 through the enzyme phospholipase D2 (PLD2). Prior to the addition of anesthetic, PLD2 associates with GM-1 lipid rafts. After anesthetic, the enzyme or a complex of the enzyme and the channel traffic to PIP2 domains where the enzyme makes phosphatidic acid that opens the channel.[13]

See also

[edit]

References

[edit]

Further reading

[edit]
[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
Add your contribution
Related Hubs
User Avatar
No comments yet.