Hubbry Logo
SCN7ASCN7AMain
Open search
SCN7A
Community hub
SCN7A
logo
8 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
SCN7A
from Wikipedia

SCN7A
Identifiers
AliasesSCN7A, NaG, Nav2.1, Nav2.2, SCN6A, sodium voltage-gated channel alpha subunit 7
External IDsOMIM: 182392; MGI: 102965; HomoloGene: 55706; GeneCards: SCN7A; OMA:SCN7A - orthologs
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002976

NM_009135

RefSeq (protein)

NP_002967

n/a

Location (UCSC)Chr 2: 166.4 – 166.61 MbChr 2: 66.5 – 66.62 Mb
PubMed search[3][4]
Wikidata
View/Edit HumanView/Edit Mouse

Nax is a protein that in humans is encoded by the SCN7A (Sodium channel protein type 7) gene.[5][6] It is a sodium channel alpha subunit expressed in the heart, the uterus and in glial cells of mice. It has low similarity to all nine other sodium channel alpha subunits (Nav1.1–1.9).[5]

Function

[edit]

Scientists have so far been unable to create a voltage-gated channel out of SCN7A. There are two theories to its purpose: sodium sensor (confirmed in rats, not reproducible in human cells), and ion channel (proposed for humans).[7]

Sodium sensor

[edit]

Mouse Scn7a can be activated by changes in the extracellular concentration of sodium [~150 mM].[8] In this role it seems to be completely insensitive to tetrodotoxin, unlike its nine conventional VGNCs cousins.[9]

Compared to normal mice, Scn7a knockout mice:

  • Do not prefer water containing less sodium during dehydration.[10]
  • Do not have blood pressure increases following salt intake. Nax are found on mouse sympathetic neurons and might be essential for this response.[11]
  • Show less regrowth of peripheral nerves after damage. It's unclear whether this process has anything to do with the putative sodium-sensor role.[12]
  • Heal wounds slower. Scn7a has previously been shown to play a role in maintaining the sodium concentration in epithelial cells. Mice with a temporary knockdown via DSIRNA also show delayed healing.[13]

Despite all the evidence pointing to Scn7a acting as a sodium sensor in rodents, there is no data for humans, not even in cell cultures. Conditions that confirm the sodium-sensing abilities of mouse Scn7a do not reliably work on human SCN7A.[7]

Putative ion channel

[edit]

The cyro-EM structure shows that human SCN7A is normally stuck in a nonconductive state, with several membrane lipid molecules blocking the pore. When three polar "QTT" mutations were added to drive the lipids away from SCN7A, one obtains a leakage channel that is always active. SCN7A-QTT does not discriminate among monovalent cations, is inhibited by extracellular calcium, and is sensitive to tetrodotoxin and other classical sodium channel blockers. This result suggests that SCN7A could actually function as an ion channel, assuming there is a way to displace the lipid molecules in vivo – this type of "hydrophobic gating" is not unheard of in other channels.[7]

Evolution

[edit]

Nax is only found in eutherian mammals. It arose by a duplication of the gene SCN9A and quickly deviated from the canonical Nav1 functions by losing key conserved residues in domains III, IV, and the loop in between. As eutherians diverged, Nax showed exceptionally high evolutionary rates across all lineages.[14]

Nax must not be confused with "Nav2" of invertebrates. This other "Nav2" is a true voltage-gated channel in these animals and carry the ancestral "D/E/E/A" ion recognition sequence.[15]

See also

[edit]

References

[edit]

Further reading

[edit]
[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
Add your contribution
Related Hubs
User Avatar
No comments yet.