Recent from talks
Nothing was collected or created yet.
Polybrominated diphenyl ethers
View on Wikipedia
This article or section appears to contradict itself on the health and environmental concerns section of the article says PBDEs aren't harmful but the rest of the article says they are. (January 2025) |
Chemical structure of PBDEs
| |
| Identifiers | |
|---|---|
| ECHA InfoCard | 100.082.305 |
CompTox Dashboard (EPA)
|
|
| Properties | |
| C12H10−xBrxO | |
| Molar mass | Variable |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
| |
Polybrominated diphenyl ethers or PBDEs, are a class of organobromine compounds that are used as flame retardants. Like other brominated flame retardants, PBDEs have been used in a wide array of products, including building materials, electronics, furnishings, motor vehicles, airplanes, plastics, polyurethane foams,[1] and textiles. They are structurally akin to polychlorinated diphenyl ethers (PCDEs), polychlorinated biphenyls (PCBs) and other polyhalogenated compounds, consisting of two halogenated aromatic rings. PBDEs are classified according to the average number of bromine atoms in the molecule. The life-saving benefits of fire retardants led to their popularization. Standards for mass transit vehicles continues to increase as of 2021.[2]: 1–26
Because of their toxicity and persistence, all commercially relevant PBDEs have been marked for elimination under the Stockholm Convention, a treaty to control and phase out major persistent organic pollutants (POPs).[3][4]
Classes of PBDEs
[edit]The family of PBDEs consists of 209 possible substances, which are called congeners (PBDE = C12H(10−x)BrxO (x = 1, 2, ..., 10 = m + n)). The number of isomers for mono-, di-, tri-, tetra-, penta-, hexa-, hepta-, octa-, nona-, and decabromodiphenyl ethers are 3, 12, 24, 42, 46, 42, 24, 12, 3 and 1, respectively.[5]
Lower-brominated PBDEs with 1–4 bromine atoms per molecule are regarded as more dangerous because they more efficiently bioaccumulate. They have been known to affect thyroid hormone levels, and studies have linked them to reproductive and neurological risks at certain concentrations or higher.[6] Higher-brominated PBDEs are less acutely dangerous but biotically and photochemically debrominate to lower-brominated congeners.[7]
| number | formula | name | CAS Number | InChIKey |
|---|---|---|---|---|
| PBDE-1 | C12H9BrO | 2-bromodiphenyl ether | 36563-47-0 | RRWFUWRLNIZICP-UHFFFAOYSA-N |
| PBDE-2 | C12H9BrO | 3-bromodiphenyl ether | 6876-00-2 | AHDAKFFMKLQPTD-UHFFFAOYSA-N |
| PBDE-3 | C12H9BrO | 4-bromodiphenyl ether | 101-55-3 | JDUYPUMQALQRCN-UHFFFAOYSA-N |
| PBDE-4 | C12H8Br2O | 2,2'-dibromodiphenyl ether | 51452-87-0 | JMSKYMHFNWGUJG-UHFFFAOYSA-N |
| PBDE-5 | C12H8Br2O | 2,3-dibromodiphenyl ether | 446254-14-4 | JTYRXXKXOULVAP-UHFFFAOYSA-N |
| PBDE-6 | C12H8Br2O | 2,3'-dibromodiphenyl ether | 147217-72-9 | GODQTPRKFHOLPH-UHFFFAOYSA-N |
| PBDE-7 | C12H8Br2O | 2,4-dibromodiphenyl ether | 171977-44-9 | JMCIHKKTRDLVCO-UHFFFAOYSA-N |
| PBDE-8 | C12H8Br2O | 2,4'-dibromodiphenyl ether | 147217-71-8 | RJQLQJZMLISKRJ-UHFFFAOYSA-N |
| PBDE-9 | C12H8Br2O | 2,5-dibromodiphenyl ether | 337513-66-3 | URDWJMUOJJSXAE-UHFFFAOYSA-N |
| PBDE-10 | C12H8Br2O | 2,6-dibromodiphenyl ether | 51930-04-2 | MUVDKHMQIZJFTC-UHFFFAOYSA-N |
| PBDE-11 | C12H8Br2O | 3,3'-dibromodiphenyl ether | 6903-63-5 | ALSVFJIXSNRBLE-UHFFFAOYSA-N |
| PBDE-12 | C12H8Br2O | 3,4-dibromodiphenyl ether | 189084-59-1 | SUUJFDKVPDCZQZ-UHFFFAOYSA-N |
| PBDE-13 | C12H8Br2O | 3,4'-dibromodiphenyl ether | 83694-71-7 | BGPOVBPKODCMMN-UHFFFAOYSA-N |
| PBDE-14 | C12H8Br2O | 3,5-dibromodiphenyl ether | 46438-88-4 | FOXBZJLXVUHYQZ-UHFFFAOYSA-N |
| PBDE-15 | C12H8Br2O | 4,4'-dibromodiphenyl ether | 2050-47-7 | YAWIAFUBXXPJMQ-UHFFFAOYSA-N |
| PBDE-16 | C12H7Br3O | 2,2',3-tribromodiphenyl ether | 147217-74-1 | VRNGWCVCSHJUEJ-UHFFFAOYSA-N |
| PBDE-17 | C12H7Br3O | 2,2',4-tribromodiphenyl ether | 147217-75-2 | VYBFILXLBMWOLI-UHFFFAOYSA-N |
| PBDE-18 | C12H7Br3O | 2,2',5-tribromodiphenyl ether | 407606-55-7 | FAZLXBWRNJAGSV-UHFFFAOYSA-N |
| PBDE-19 | C12H7Br3O | 2,2',6-tribromodiphenyl ether | 147217-73-0 | YDFQHBRKURQGAH-UHFFFAOYSA-N |
| PBDE-20 | C12H7Br3O | 2,3,3'-tribromodiphenyl ether | 147217-76-3 | RQJUBSPXDSGLRB-UHFFFAOYSA-N |
| PBDE-21 | C12H7Br3O | 2,3,4-tribromodiphenyl ether | 337513-67-4 | RXWRVYYPLRPDOS-UHFFFAOYSA-N |
| PBDE-22 | C12H7Br3O | 2,3,4'-tribromodiphenyl ether | 446254-15-5 | WZHNIFQVNBINLF-UHFFFAOYSA-N |
| PBDE-23 | C12H7Br3O | 2,3,5-tribromodiphenyl ether | 446254-16-6 | XQHLKDAUZRXBGC-UHFFFAOYSA-N |
| PBDE-24 | C12H7Br3O | 2,3,6-tribromodiphenyl ether | 218304-36-0 | GFLRHBRMAZDOIG-UHFFFAOYSA-N |
| PBDE-25 | C12H7Br3O | 2,3',4-tribromodiphenyl ether | 147217-77-4 | AURKEOPYVUYTLO-UHFFFAOYSA-N |
| PBDE-26 | C12H7Br3O | 2,3',5-tribromodiphenyl ether | 337513-75-4 | VUOBKVBAFJQQDB-UHFFFAOYSA-N |
| PBDE-27 | C12H7Br3O | 2,3',6-tribromodiphenyl ether | 337513-53-8 | JUPZALSVNWJHII-UHFFFAOYSA-N |
| PBDE-28 | C12H7Br3O | 2,4,4'-tribromodiphenyl ether | 41318-75-6 | UPNBETHEXPIWQX-UHFFFAOYSA-N |
| PBDE-29 | C12H7Br3O | 2,4,5-tribromodiphenyl ether | 337513-56-1 | LTMKAFUXYKEDLR-UHFFFAOYSA-N |
| PBDE-30 | C12H7Br3O | 2,4,6-tribromodiphenyl ether | 155999-95-4 | TVZAPPGLBLTACB-UHFFFAOYSA-N |
| PBDE-31 | C12H7Br3O | 2,4',5-tribromodiphenyl ether | 65075-08-3 | PURZBWMLFRWRMG-UHFFFAOYSA-N |
| PBDE-32 | C12H7Br3O | 2,4',6-tribromodiphenyl ether | 189084-60-4 | TYDVYKIQSZGUMV-UHFFFAOYSA-N |
| PBDE-33 | C12H7Br3O | 2,3',4'-tribromodiphenyl ether | 49690-94-0 | BUQBQEYUVAKJQK-UHFFFAOYSA-N |
| PBDE-34 | C12H7Br3O | 2,3',5'-tribromodiphenyl ether | 446254-17-7 | XMNXHCHZIPYCNA-UHFFFAOYSA-N |
| PBDE-35 | C12H7Br3O | 3,3',4-tribromodiphenyl ether | 147217-80-9 | CDVYKQPKJYPWRO-UHFFFAOYSA-N |
| PBDE-36 | C12H7Br3O | 3,3',5-tribromodiphenyl ether | 147217-79-6 | XUKPJLVONRTECE-UHFFFAOYSA-N |
| PBDE-37 | C12H7Br3O | 3,4,4'-tribromodiphenyl ether | 147217-81-0 | YALAYFVVZFORPV-UHFFFAOYSA-N |
| PBDE-38 | C12H7Br3O | 3,4,5-tribromodiphenyl ether | 337513-54-9 | DPGVQKLGQZZLMI-UHFFFAOYSA-N |
| PBDE-39 | C12H7Br3O | 3,4',5-tribromodiphenyl ether | 407606-57-9 | UFFNOPDHJNQYKD-UHFFFAOYSA-N |
| PBDE-40 | C12H6Br4O | 2,2',3,3'-tetrabromodiphenyl ether | 337513-77-6 | SXSUUFZWSVMTRL-UHFFFAOYSA-N |
| PBDE-41 | C12H6Br4O | 2,2',3,4-tetrabromodiphenyl ether | 337513-68-5 | UAEBSKBXZAIRMX-UHFFFAOYSA-N |
| PBDE-42 | C12H6Br4O | 2,2',3,4'-tetrabromodiphenyl ether | 446254-18-8 | HQDQKPAHIDGGMH-UHFFFAOYSA-N |
| PBDE-43 | C12H6Br4O | 2,2',3,5-tetrabromodiphenyl ether | 446254-19-9 | LKMQHSYDVDIECC-UHFFFAOYSA-N |
| PBDE-44 | C12H6Br4O | 2,2',3,5'-tetrabromodiphenyl ether | 446254-20-2 | VBGBGTYMDIVKNK-UHFFFAOYSA-N |
| PBDE-45 | C12H6Br4O | 2,2',3,6-tetrabromodiphenyl ether | 446254-21-3 | VTFWUBIOZQCMQS-UHFFFAOYSA-N |
| PBDE-46 | C12H6Br4O | 2,2',3,6'-tetrabromodiphenyl ether | 446254-22-4 | GBUUKJRFSKCMTB-UHFFFAOYSA-N |
| PBDE-47 | C12H6Br4O | 2,2',4,4'-tetrabromodiphenyl ether | 5436-43-1 | XYBSIYMGXVUVGY-UHFFFAOYSA-N |
| PBDE-48 | C12H6Br4O | 2,2',4,5-tetrabromodiphenyl ether | 337513-55-0 | FJGDNHOVDFREMP-UHFFFAOYSA-N |
| PBDE-49 | C12H6Br4O | 2,2',4,5'-tetrabromodiphenyl ether | 243982-82-3 | QWVDUBDYUPHNHY-UHFFFAOYSA-N |
| PBDE-50 | C12H6Br4O | 2,2',4,6-tetrabromodiphenyl ether | 446254-23-5 | FXUAKFRJBKFDSY-UHFFFAOYSA-N |
| PBDE-51 | C12H6Br4O | 2,2',4,6'-tetrabromodiphenyl ether | 189084-57-9 | WKBBBTLDLKYGBI-UHFFFAOYSA-N |
| PBDE-52 | C12H6Br4O | 2,2',5,5'-tetrabromodiphenyl ether | 446254-24-6 | CDTHXJORUCZHMD-UHFFFAOYSA-N |
| PBDE-53 | C12H6Br4O | 2,2',5,6'-tetrabromodiphenyl ether | 446254-25-7 | SDVQGIMOFXMKHR-UHFFFAOYSA-N |
| PBDE-54 | C12H6Br4O | 2,2',6,6'-tetrabromodiphenyl ether | 446254-26-8 | WCDCHQGVTZHVSO-UHFFFAOYSA-N |
| PBDE-55 | C12H6Br4O | 2,3,3',4-tetrabromodiphenyl ether | 446254-27-9 | VIHUMJGEWQPWOT-UHFFFAOYSA-N |
| PBDE-56 | C12H6Br4O | 2,3,3',4'-tetrabromodiphenyl ether | 446254-28-0 | NFOIVCGFYJIYIB-UHFFFAOYSA-N |
| PBDE-57 | C12H6Br4O | 2,3,3',5-tetrabromodiphenyl ether | 337513-82-3 | CSIFWDKYUJLQEB-UHFFFAOYSA-N |
| PBDE-58 | C12H6Br4O | 2,3,3',5'-tetrabromodiphenyl ether | 446254-29-1 | SWOYBZHGPZIRHS-UHFFFAOYSA-N |
| PBDE-59 | C12H6Br4O | 2,3,3',6-tetrabromodiphenyl ether | 446254-30-4 | DMAMJZQQOWYEHT-UHFFFAOYSA-N |
| PBDE-60 | C12H6Br4O | 2,3,4,4'-tetrabromodiphenyl ether | 446254-31-5 | ARERIMFZYPFJAV-UHFFFAOYSA-N |
| PBDE-61 | C12H6Br4O | 2,3,4,5-tetrabromodiphenyl ether | 446254-32-6 | NDRSXNBQWAOQPP-UHFFFAOYSA-N |
| PBDE-62 | C12H6Br4O | 2,3,4,6-tetrabromodiphenyl ether | 446254-33-7 | YIQYWYZZLOZVRM-UHFFFAOYSA-N |
| PBDE-63 | C12H6Br4O | 2,3,4',5-tetrabromodiphenyl ether | 446254-34-8 | HNICYXFGCWPYGC-UHFFFAOYSA-N |
| PBDE-64 | C12H6Br4O | 2,3,4',6-tetrabromodiphenyl ether | 446254-35-9 | LDCXVFJUWKKBNY-UHFFFAOYSA-N |
| PBDE-65 | C12H6Br4O | 2,3,5,6-tetrabromodiphenyl ether | 446254-36-0 | HPEUYVBOPJQVPN-UHFFFAOYSA-N |
| PBDE-66 | C12H6Br4O | 2,3',4,4'-tetrabromodiphenyl ether | 189084-61-5 | DHUMTYRHKMCVAG-UHFFFAOYSA-N |
| PBDE-67 | C12H6Br4O | 2,3',4,5-tetrabromodiphenyl ether | 446254-37-1 | OARGWSONVLGXQA-UHFFFAOYSA-N |
| PBDE-68 | C12H6Br4O | 2,3',4,5'-tetrabromodiphenyl ether | 446254-38-2 | UFWGRLCUOLLWAO-UHFFFAOYSA-N |
| PBDE-69 | C12H6Br4O | 2,3',4,6-tetrabromodiphenyl ether | 327185-09-1 | NHZNRCYNZJADTG-UHFFFAOYSA-N |
| PBDE-70 | C12H6Br4O | 2,3',4',5-tetrabromodiphenyl ether | 446254-39-3 | GHQMTYWQVJZWAR-UHFFFAOYSA-N |
| PBDE-71 | C12H6Br4O | 2,3',4',6-tetrabromodiphenyl ether | 189084-62-6 | COPAGYRSCJVION-UHFFFAOYSA-N |
| PBDE-72 | C12H6Br4O | 2,3',5,5'-tetrabromodiphenyl ether | 446254-40-6 | GBBNZKQTOOZGIS-UHFFFAOYSA-N |
| PBDE-73 | C12H6Br4O | 2,3',5',6-tetrabromodiphenyl ether | 446254-41-7 | WQFLVWXBCRJAQN-UHFFFAOYSA-N |
| PBDE-74 | C12H6Br4O | 2,4,4',5-tetrabromodiphenyl ether | 446254-42-8 | LXCFDVVDUVPAGR-UHFFFAOYSA-N |
| PBDE-75 | C12H6Br4O | 2,4,4',6-tetrabromodiphenyl ether | 189084-63-7 | BWCNKMFFUGBFGB-UHFFFAOYSA-N |
| PBDE-76 | C12H6Br4O | 2,3',4',5'-tetrabromodiphenyl ether | 446254-43-9 | NCSWBJSFVPJPPK-UHFFFAOYSA-N |
| PBDE-77 | C12H6Br4O | 3,3',4,4'-tetrabromodiphenyl ether | 93703-48-1 | RYGLOWMCGZHYRQ-UHFFFAOYSA-N |
| PBDE-78 | C12H6Br4O | 3,3',4,5-tetrabromodiphenyl ether | 446254-45-1 | HWOBLTZZSVXBOJ-UHFFFAOYSA-N |
| PBDE-79 | C12H6Br4O | 3,3',4,5'-tetrabromodiphenyl ether | 446254-48-4 | LELQGHJEUVRPEV-UHFFFAOYSA-N |
| PBDE-80 | C12H6Br4O | 3,3',5,5'-tetrabromodiphenyl ether | 103173-66-6 | HFIOZJQRZKNPKJ-UHFFFAOYSA-N |
| PBDE-81 | C12H6Br4O | 3,4,4',5-tetrabromodiphenyl ether | 446254-50-8 | ULFOIXCXIWHJDS-UHFFFAOYSA-N |
| PBDE-82 | C12H5Br5O | 2,2',3,3',4-pentabromodiphenyl ether | 327185-11-5 | RQMSPGJESCCPQX-UHFFFAOYSA-N |
| PBDE-83 | C12H5Br5O | 2,2',3,3',5-pentabromodiphenyl ether | 446254-51-9 | XAHYSNUYJLNDBX-UHFFFAOYSA-N |
| PBDE-84 | C12H5Br5O | 2,2',3,3',6-pentabromodiphenyl ether | 446254-52-0 | PPIZNRAVQHNLJM-UHFFFAOYSA-N |
| PBDE-85 | C12H5Br5O | 2,2',3,4,4'-pentabromodiphenyl ether | 182346-21-0 | DMLQSUZPTTUUDP-UHFFFAOYSA-N |
| PBDE-86 | C12H5Br5O | 2,2',3,4,5-pentabromodiphenyl ether | 446254-53-1 | YMVWYUWOUOQCQP-UHFFFAOYSA-N |
| PBDE-87 | C12H5Br5O | 2,2',3,4,5'-pentabromodiphenyl ether | 446254-54-2 | WKYQUGCIKNOXFW-UHFFFAOYSA-N |
| PBDE-88 | C12H5Br5O | 2,2',3,4,6-pentabromodiphenyl ether | 446254-55-3 | OPZUHBCVIZNZFB-UHFFFAOYSA-N |
| PBDE-89 | C12H5Br5O | 2,2',3,4,6'-pentabromodiphenyl ether | 446254-56-4 | XGFLJLJXVIMCNR-UHFFFAOYSA-N |
| PBDE-90 | C12H5Br5O | 2,2',3,4',5-pentabromodiphenyl ether | 446254-57-5 | BATFXMGTVIESIQ-UHFFFAOYSA-N |
| PBDE-91 | C12H5Br5O | 2,2',3,4',6-pentabromodiphenyl ether | 446254-58-6 | HWNJTZKDPNZUSO-UHFFFAOYSA-N |
| PBDE-92 | C12H5Br5O | 2,2',3,5,5'-pentabromodiphenyl ether | 446254-59-7 | QWSQOVAGRDRZLM-UHFFFAOYSA-N |
| PBDE-93 | C12H5Br5O | 2,2',3,5,6-pentabromodiphenyl ether | 446254-60-0 | BRTPVPJQMWLDNO-UHFFFAOYSA-N |
| PBDE-94 | C12H5Br5O | 2,2',3,5,6'-pentabromodiphenyl ether | 446254-61-1 | JOPASNJHCFYVHD-UHFFFAOYSA-N |
| PBDE-95 | C12H5Br5O | 2,2',3,5',6-pentabromodiphenyl ether | 446254-62-2 | BZDYRALIEYVMEP-UHFFFAOYSA-N |
| PBDE-96 | C12H5Br5O | 2,2',3,6,6'-pentabromodiphenyl ether | 446254-63-3 | ZFCJNRDWGBZUED-UHFFFAOYSA-N |
| PBDE-97 | C12H5Br5O | 2,2',3,4',5'-pentabromodiphenyl ether | 446254-64-4 | MAGYDGJRSCULJL-UHFFFAOYSA-N |
| PBDE-98 | C12H5Br5O | 2,2',3,4',6'-pentabromodiphenyl ether | 38463-82-0 | OCLWEJVGAUFXQU-UHFFFAOYSA-N |
| PBDE-99 | C12H5Br5O | 2,2',4,4',5-pentabromodiphenyl ether | 60348-60-9 | WHPVYXDFIXRKLN-UHFFFAOYSA-N |
| PBDE-100 | C12H5Br5O | 2,2',4,4',6-pentabromodiphenyl ether | 189084-64-8 | NSKIRYMHNFTRLR-UHFFFAOYSA-N |
| PBDE-101 | C12H5Br5O | 2,2',4,5,5'-pentabromodiphenyl ether | 446254-65-5 | QUZWDWNIWWAQDI-UHFFFAOYSA-N |
| PBDE-102 | C12H5Br5O | 2,2',4,5,6'-pentabromodiphenyl ether | 446254-66-6 | JHFMCUVMAIQWRI-UHFFFAOYSA-N |
| PBDE-103 | C12H5Br5O | 2,2',4,5',6-pentabromodiphenyl ether | 446254-67-7 | RJEMKRNASVHYKR-UHFFFAOYSA-N |
| PBDE-104 | C12H5Br5O | 2,2',4,6,6'-pentabromodiphenyl ether | 446254-68-8 | CRSCWEYUPUKHPI-UHFFFAOYSA-N |
| PBDE-105 | C12H5Br5O | 2,3,3',4,4'-pentabromodiphenyl ether | 373594-78-6 | LBPWAGZGYNOKAM-UHFFFAOYSA-N |
| PBDE-106 | C12H5Br5O | 2,3,3',4,5-pentabromodiphenyl ether | 446254-69-9 | KLQKWMYXEWUAFP-UHFFFAOYSA-N |
| PBDE-107 | C12H5Br5O | 2,3,3',4',5-pentabromodiphenyl ether | 446254-70-2 | OMGVAMFMRSETEG-UHFFFAOYSA-N |
| PBDE-108 | C12H5Br5O | 2,3,3',4,5'-pentabromodiphenyl ether | 446254-71-3 | VBKPKHVLHGOKOJ-UHFFFAOYSA-N |
| PBDE-109 | C12H5Br5O | 2,3,3',4,6-pentabromodiphenyl ether | 446254-72-4 | FXXXWTMLIQLDRP-UHFFFAOYSA-N |
| PBDE-110 | C12H5Br5O | 2,3,3',4',6-pentabromodiphenyl ether | 446254-73-5 | LESZGJVTZILBTK-UHFFFAOYSA-N |
| PBDE-111 | C12H5Br5O | 2,3,3',5,5'-pentabromodiphenyl ether | 446254-74-6 | PCHDCOXHJBWEPW-UHFFFAOYSA-N |
| PBDE-112 | C12H5Br5O | 2,3,3',5,6-pentabromodiphenyl ether | 446254-75-7 | MFBMNSFADPTAKZ-UHFFFAOYSA-N |
| PBDE-113 | C12H5Br5O | 2,3,3',5',6-pentabromodiphenyl ether | 446254-76-8 | OGZHLJXRGZFVLI-UHFFFAOYSA-N |
| PBDE-114 | C12H5Br5O | 2,3,4,4',5-pentabromodiphenyl ether | 446254-77-9 | SFNAUTSNWPPDSY-UHFFFAOYSA-N |
| PBDE-115 | C12H5Br5O | 2,3,4,4',6-pentabromodiphenyl ether | 446254-78-0 | BKTLDVXDOVSTEV-UHFFFAOYSA-N |
| PBDE-116 | C12H5Br5O | 2,3,4,5,6-pentabromodiphenyl ether | 189084-65-9 | ACRQLFSHISNWRY-UHFFFAOYSA-N |
| PBDE-117 | C12H5Br5O | 2,3,4',5,6-pentabromodiphenyl ether | 446254-79-1 | SOJBOGWFDBDWEG-UHFFFAOYSA-N |
| PBDE-118 | C12H5Br5O | 2,3',4,4',5-pentabromodiphenyl ether | 446254-80-4 | VTMFEPLDDHZBGI-UHFFFAOYSA-N |
| PBDE-119 | C12H5Br5O | 2,3',4,4',6-pentabromodiphenyl ether | 189084-66-0 | KXEOYBYEJCRPGB-UHFFFAOYSA-N |
| PBDE-120 | C12H5Br5O | 2,3',4,5,5'-pentabromodiphenyl ether | 417727-71-0 | AKSBEUHDCRZJAN-UHFFFAOYSA-N |
| PBDE-121 | C12H5Br5O | 2,3',4,5',6-pentabromodiphenyl ether | 446254-81-5 | GVGNVZBJVFDAAO-UHFFFAOYSA-N |
| PBDE-122 | C12H5Br5O | 2,3,3',4',5'-pentabromodiphenyl ether | 446254-82-6 | CDNHGSPFIUITTN-UHFFFAOYSA-N |
| PBDE-123 | C12H5Br5O | 2,3',4,4',5'-pentabromodiphenyl ether | 446254-83-7 | SBKMUEQNZNDYFW-UHFFFAOYSA-N |
| PBDE-124 | C12H5Br5O | 2,3',4',5,5'-pentabromodiphenyl ether | 446254-84-8 | FGHJTAAHIFEHLT-UHFFFAOYSA-N |
| PBDE-125 | C12H5Br5O | 2,3',4',5',6-pentabromodiphenyl ether | 446254-85-9 | SESXKFPOVUVGLR-UHFFFAOYSA-N |
| PBDE-126 | C12H5Br5O | 3,3',4,4',5-pentabromodiphenyl ether | 366791-32-4 | SJNIIWPIAVQNRK-UHFFFAOYSA-N |
| PBDE-127 | C12H5Br5O | 3,3',4,5,5'-pentabromodiphenyl ether | 446254-86-0 | RATMRXKBPDCKCZ-UHFFFAOYSA-N |
| PBDE-128 | C12H4Br6O | 2,2',3,3',4,4'-hexabromodiphenyl ether | 182677-28-7 | WFLVELCLEGVBIH-UHFFFAOYSA-N |
| PBDE-129 | C12H4Br6O | 2,2',3,3',4,5-hexabromodiphenyl ether | 446254-87-1 | PRNCVYAUCSGSOE-UHFFFAOYSA-N |
| PBDE-130 | C12H4Br6O | 2,2',3,3',4,5'-hexabromodiphenyl ether | 446254-88-2 | YURCHLXPAGSJHU-UHFFFAOYSA-N |
| PBDE-131 | C12H4Br6O | 2,2',3,3',4,6-hexabromodiphenyl ether | 446254-89-3 | MGKVPJFIGGBCBA-UHFFFAOYSA-N |
| PBDE-132 | C12H4Br6O | 2,2',3,3',4,6'-hexabromodiphenyl ether | 446254-90-6 | FFEKBOKDYRZGRV-UHFFFAOYSA-N |
| PBDE-133 | C12H4Br6O | 2,2',3,3',5,5'-hexabromodiphenyl ether | 446254-91-7 | XTBFPFHQPGZZJX-UHFFFAOYSA-N |
| PBDE-134 | C12H4Br6O | 2,2',3,3',5,6-hexabromodiphenyl ether | 446254-92-8 | MIBDGPWSGDWIQR-UHFFFAOYSA-N |
| PBDE-135 | C12H4Br6O | 2,2',3,3',5,6'-hexabromodiphenyl ether | 446254-93-9 | AMGHASDTWACNCS-UHFFFAOYSA-N |
| PBDE-136 | C12H4Br6O | 2,2',3,3',6,6'-hexabromodiphenyl ether | 446254-94-0 | NTWGDSLWLUPCDW-UHFFFAOYSA-N |
| PBDE-137 | C12H4Br6O | 2,2',3,4,4',5-hexabromodiphenyl ether | 446254-95-1 | HSTYYNPYXZYIAG-UHFFFAOYSA-N |
| PBDE-138 | C12H4Br6O | 2,2',3,4,4',5'-hexabromodiphenyl ether | 182677-30-1 | IZFQCEZFGCMHOM-UHFFFAOYSA-N |
| PBDE-139 | C12H4Br6O | 2,2',3,4,4',6-hexabromodiphenyl ether | 446254-96-2 | YESDYWNWEVPOLZ-UHFFFAOYSA-N |
| PBDE-140 | C12H4Br6O | 2,2',3,4,4',6'-hexabromodiphenyl ether | 243982-83-4 | FLRODCDHJZNIGA-UHFFFAOYSA-N |
| PBDE-141 | C12H4Br6O | 2,2',3,4,5,5'-hexabromodiphenyl ether | 446254-97-3 | XTXIYMGRRUJOIT-UHFFFAOYSA-N |
| PBDE-142 | C12H4Br6O | 2,2',3,4,5,6-hexabromodiphenyl ether | 446254-98-4 | LJDGJCNHVGGOFW-UHFFFAOYSA-N |
| PBDE-143 | C12H4Br6O | 2,2',3,4,5,6'-hexabromodiphenyl ether | 446254-99-5 | RQLZDUSZXOOBTM-UHFFFAOYSA-N |
| PBDE-144 | C12H4Br6O | 2,2',3,4,5',6-hexabromodiphenyl ether | 446255-00-1 | ZMSJCQOCTPYCQP-UHFFFAOYSA-N |
| PBDE-145 | C12H4Br6O | 2,2',3,4,6,6'-hexabromodiphenyl ether | 446255-01-2 | BTKLHMBWCRVCLC-UHFFFAOYSA-N |
| PBDE-146 | C12H4Br6O | 2,2',3,4',5,5'-hexabromodiphenyl ether | 446255-02-3 | HGXPYDNHBUCRTR-UHFFFAOYSA-N |
| PBDE-147 | C12H4Br6O | 2,2',3,4',5,6-hexabromodiphenyl ether | 116995-33-6 | OWBKWMDBTWHGHS-UHFFFAOYSA-N |
| PBDE-148 | C12H4Br6O | 2,2',3,4',5,6'-hexabromodiphenyl ether | 446255-03-4 | OJMHGSMSQZEBFH-UHFFFAOYSA-N |
| PBDE-149 | C12H4Br6O | 2,2',3,4',5',6-hexabromodiphenyl ether | 446255-04-5 | UJOUSZKYGGTPFQ-UHFFFAOYSA-N |
| PBDE-150 | C12H4Br6O | 2,2',3,4',6,6'-hexabromodiphenyl ether | 446255-05-6 | SQNOZOVDXXSLSG-UHFFFAOYSA-N |
| PBDE-151 | C12H4Br6O | 2,2',3,5,5',6-hexabromodiphenyl ether | 446255-06-7 | NGOQQUYCSISZMY-UHFFFAOYSA-N |
| PBDE-152 | C12H4Br6O | 2,2',3,5,6,6'-hexabromodiphenyl ether | 446255-07-8 | BYBJJARTBKUIJD-UHFFFAOYSA-N |
| PBDE-153 | C12H4Br6O | 2,2',4,4',5,5'-hexabromodiphenyl ether | 68631-49-2 | RZXIRSKYBISPGF-UHFFFAOYSA-N |
| PBDE-154 | C12H4Br6O | 2,2',4,4',5,6'-hexabromodiphenyl ether | 207122-15-4 | VHNPZYZQKWIWOD-UHFFFAOYSA-N |
| PBDE-155 | C12H4Br6O | 2,2',4,4',6,6'-hexabromodiphenyl ether | 35854-94-5 | HRSCBOSGEKXXSI-UHFFFAOYSA-N |
| PBDE-156 | C12H4Br6O | 2,3,3',4,4',5-hexabromodiphenyl ether | 405237-85-6 | JSDPCMJWYRDQEV-UHFFFAOYSA-N |
| PBDE-157 | C12H4Br6O | 2,3,3',4,4',5'-hexabromodiphenyl ether | 446255-08-9 | JUOAMVUIJQJZSZ-UHFFFAOYSA-N |
| PBDE-158 | C12H4Br6O | 2,3,3',4,4',6-hexabromodiphenyl ether | 446255-09-0 | KRYHHTVQOOJNHQ-UHFFFAOYSA-N |
| PBDE-159 | C12H4Br6O | 2,3,3',4,5,5'-hexabromodiphenyl ether | 446255-10-3 | IDYFFNCFLRCOPZ-UHFFFAOYSA-N |
| PBDE-160 | C12H4Br6O | 2,3,3',4,5,6-hexabromodiphenyl ether | 446255-11-4 | OCVOYHGOXIIONK-UHFFFAOYSA-N |
| PBDE-161 | C12H4Br6O | 2,3,3',4,5',6-hexabromodiphenyl ether | 446255-12-5 | WEYWRBBPPKSRGU-UHFFFAOYSA-N |
| PBDE-162 | C12H4Br6O | 2,3,3',4',5,5'-hexabromodiphenyl ether | 446255-13-6 | UKPNCLHMNJCGCJ-UHFFFAOYSA-N |
| PBDE-163 | C12H4Br6O | 2,3,3',4',5,6-hexabromodiphenyl ether | 446255-14-7 | NUEAHMLXQFHEJN-UHFFFAOYSA-N |
| PBDE-164 | C12H4Br6O | 2,3,3',4',5',6-hexabromodiphenyl ether | 446255-15-8 | UJVYVXIHTJOJBZ-UHFFFAOYSA-N |
| PBDE-165 | C12H4Br6O | 2,3,3',5,5',6-hexabromodiphenyl ether | 446255-16-9 | KXERERDGMTWBGZ-UHFFFAOYSA-N |
| PBDE-166 | C12H4Br6O | 2,3,4,4',5,6-hexabromodiphenyl ether | 189084-58-0 | KVYODBMKQYVNEK-UHFFFAOYSA-N |
| PBDE-167 | C12H4Br6O | 2,3',4,4',5,5'-hexabromodiphenyl ether | 446255-17-0 | NMUPLZRHSXJCJQ-UHFFFAOYSA-N |
| PBDE-168 | C12H4Br6O | 2,3',4,4',5',6-hexabromodiphenyl ether | 53551-87-4 | HWZAPXGFMVEGPW-UHFFFAOYSA-N |
| PBDE-169 | C12H4Br6O | 3,3',4,4',5,5'-hexabromodiphenyl ether | 446255-18-1 | JKFBMDHBJYKFKL-UHFFFAOYSA-N |
| PBDE-170 | C12H3Br7O | 2,2',3,3',4,4',5-heptabromodiphenyl ether | 327185-13-7 | DLPNCMQTNWLTHD-UHFFFAOYSA-N |
| PBDE-171 | C12H3Br7O | 2,2',3,3',4,4',6-heptabromodiphenyl ether | 446255-19-2 | FRMMMROUUPQUMZ-UHFFFAOYSA-N |
| PBDE-172 | C12H3Br7O | 2,2',3,3',4,5,5'-heptabromodiphenyl ether | 407606-59-1 | DSRRSKFMOJQETR-UHFFFAOYSA-N |
| PBDE-173 | C12H3Br7O | 2,2',3,3',4,5,6-heptabromodiphenyl ether | 446255-20-5 | NLBLNZDNOSSGPW-UHFFFAOYSA-N |
| PBDE-174 | C12H3Br7O | 2,2',3,3',4,5,6'-heptabromodiphenyl ether | 446255-21-6 | VUUWOHUOYUGBEO-UHFFFAOYSA-N |
| PBDE-175 | C12H3Br7O | 2,2',3,3',4,5',6-heptabromodiphenyl ether | 6255-22-7 | YATZWTXATDYQCK-UHFFFAOYSA-N |
| PBDE-176 | C12H3Br7O | 2,2',3,3',4,6,6'-heptabromodiphenyl ether | 407606-61-5 | SWUALKCOTZOSMY-UHFFFAOYSA-N |
| PBDE-177 | C12H3Br7O | 2,2',3,3',4,5',6'-heptabromodiphenyl ether | 446255-23-8 | ZHUHLPXIJIBQBJ-UHFFFAOYSA-N |
| PBDE-178 | C12H3Br7O | 2,2',3,3',5,5',6-heptabromodiphenyl ether | 446255-24-9 | UWUVZUPEEORCRG-UHFFFAOYSA-N |
| PBDE-179 | C12H3Br7O | 2,2',3,3',5,6,6'-heptabromodiphenyl ether | 446255-25-0 | COVXWWKOLMNRQE-UHFFFAOYSA-N |
| PBDE-180 | C12H3Br7O | 2,2',3,4,4',5,5'-heptabromodiphenyl ether | 446255-26-1 | STMBXVOJNOJRPZ-UHFFFAOYSA-N |
| PBDE-181 | C12H3Br7O | 2,2',3,4,4',5,6-heptabromodiphenyl ether | 189084-67-1 | GVNRIAPLVGNZPL-UHFFFAOYSA-N |
| PBDE-182 | C12H3Br7O | 2,2',3,4,4',5,6'-heptabromodiphenyl ether | 442690-45-1 | ZYHDTADADSNMLV-UHFFFAOYSA-N |
| PBDE-183 | C12H3Br7O | 2,2',3,4,4',5',6-heptabromodiphenyl ether | 207122-16-5 | ILPSCQCLBHQUEM-UHFFFAOYSA-N |
| PBDE-184 | C12H3Br7O | 2,2',3,4,4',6,6'-heptabromodiphenyl ether | 117948-63-7 | JHDCZVAQPRXHEL-UHFFFAOYSA-N |
| PBDE-185 | C12H3Br7O | 2,2',3,4,5,5',6-heptabromodiphenyl ether | 405237-86-7 | YRNMIFAQDSUFTR-UHFFFAOYSA-N |
| PBDE-186 | C12H3Br7O | 2,2',3,4,5,6,6'-heptabromodiphenyl ether | 446255-27-2 | WUFQDCMRKKDNSF-UHFFFAOYSA-N |
| PBDE-187 | C12H3Br7O | 2,2',3,4',5,5',6-heptabromodiphenyl ether | 446255-28-3 | RFZPXOBFDARWHV-UHFFFAOYSA-N |
| PBDE-188 | C12H3Br7O | 2,2',3,4',5,6,6'-heptabromodiphenyl ether | 116995-32-5 | YGYDHFDPVGAMTL-UHFFFAOYSA-N |
| PBDE-189 | C12H3Br7O | 2,3,3',4,4',5,5'-heptabromodiphenyl ether | 259087-35-9 | CQVLRTUESBMMJW-UHFFFAOYSA-N |
| PBDE-190 | C12H3Br7O | 2,3,3',4,4',5,6-heptabromodiphenyl ether | 189084-68-2 | OUEYHQIMJGHOQN-UHFFFAOYSA-N |
| PBDE-191 | C12H3Br7O | 2,3,3',4,4',5',6-heptabromodiphenyl ether | 446255-30-7 | BNBFKFHSIPERIM-UHFFFAOYSA-N |
| PBDE-192 | C12H3Br7O | 2,3,3',4,5,5',6-heptabromodiphenyl ether | 407578-53-4 | ABLZOLAUBUSUHT-UHFFFAOYSA-N |
| PBDE-193 | C12H3Br7O | 2,3,3',4',5,5',6-heptabromodiphenyl ether | 446255-34-1 | AUFJSWANTKXCFZ-UHFFFAOYSA-N |
| PBDE-194 | C12H2Br8O | 2,2',3,3',4,4',5,5'-octabromodiphenyl ether | 32536-52-0 | ORYGKUIDIMIRNN-UHFFFAOYSA-N |
| PBDE-195 | C12H2Br8O | 2,2',3,3',4,4',5,6-octabromodiphenyl ether | 446255-38-5 | GPQLSLKPHQEEOP-UHFFFAOYSA-N |
| PBDE-196 | C12H2Br8O | 2,2',3,3',4,4',5,6'-octabromodiphenyl ether | 446255-39-6 | IEWFKOVTVJNWFF-UHFFFAOYSA-N |
| PBDE-197 | C12H2Br8O | 2,2',3,3',4,4',6,6'-octabromodiphenyl ether | 117964-21-3 | AAFUUKPTSPVXJH-UHFFFAOYSA-N |
| PBDE-198 | C12H2Br8O | 2,2',3,3',4,5,5',6-octabromodiphenyl ether | 446255-42-1 | IBKRHVDFFHQOSC-UHFFFAOYSA-N |
| PBDE-199 | C12H2Br8O | 2,2',3,3',4,5,5',6'-octabromodiphenyl ether | 446255-43-2 | JNSLJYRXDGBNBE-UHFFFAOYSA-N |
| PBDE-200 | C12H2Br8O | 2,2',3,3',4,5,6,6'-octabromodiphenyl ether | 446255-46-5 | JWMXGEPFVCRXQR-UHFFFAOYSA-N |
| PBDE-201 | C12H2Br8O | 2,2',3,3',4,5',6,6'-octabromodiphenyl ether | 446255-50-1 | HQWFMMKREWXIGN-UHFFFAOYSA-N |
| PBDE-202 | C12H2Br8O | 2,2',3,3',5,5',6,6'-octabromodiphenyl ether | 67797-09-5 | AHNZLQAZTWRRDW-UHFFFAOYSA-N |
| PBDE-203 | C12H2Br8O | 2,2',3,4,4',5,5',6-octabromodiphenyl ether | 337513-72-1 | RTUZOQFRIPIWPS-UHFFFAOYSA-N |
| PBDE-204 | C12H2Br8O | 2,2',3,4,4',5,6,6'-octabromodiphenyl ether | 446255-54-5 | YZABCBOJTHQTSX-UHFFFAOYSA-N |
| PBDE-205 | C12H2Br8O | 2,3,3',4,4',5,5',6-octabromodiphenyl ether | 446255-56-7 | CVMKCYDBEYHNBM-UHFFFAOYSA-N |
| PBDE-206 | C12HBr9O | 2,2',3,3',4,4',5,5',6-nonabromodiphenyl ether | 63387-28-0 | CYRHBNRLQMLULE-UHFFFAOYSA-N |
| PBDE-207 | C12HBr9O | 2,2',3,3',4,4',5,6,6'-nonabromodiphenyl ether | 437701-79-6 | IEEVDIAVLGLVOW-UHFFFAOYSA-N |
| PBDE-208 | C12HBr9O | 2,2',3,3',4,5,5',6,6'-nonabromodiphenyl ether | 437701-78-5 | ASGZXYIDLFWXID-UHFFFAOYSA-N |
| PBDE-209 | C12Br10O | decabromodiphenyl ether | 1163-19-5 | WHHGLZMJPXIBIX-UHFFFAOYSA-N |
Production
[edit]PBDEs were produced commercially via the bromination of diphenyl ether,[8] with three technical-grade mixtures being sold, varying by degree of bromination.
In the United States, PBDEs were marketed with the trade names DE-60F, DE-61, DE-62, and DE-71 applied to pentaBDE mixtures, DE-79 applied to octaBDE mixtures, and DE 83R and Saytex 102E applied to decaBDE mixtures. The available commercial PBDE products were not single compounds or even single congeners but rather mixtures of congeners.
Technical pentaBDE predominantly contained pentabromo derivatives (50–62%); however, the mixture also contained tetrabromides (24–38%) and hexabromides (4–8%), as well as traces of the tribromides (0–1%). Technical octaBDE was a mixture of homologs: hexa-, hepta-, octa-, nona-, and decabromides. Technical decaBDE was 97% decabromide, with small amounts of octa- and nonabromides.[7]
Commercial production of PBDEs began in the 1970s,[9] and continued until the early 2010s. Cumulative global production is estimated to have been 175 kt for pentaBDE, 130 kt for octaBDE, and 1600 kt for decaBDE.[10]
Health and environmental concerns
[edit]Exposure
[edit]Polybrominated diphenyl ethers (PBDEs) can be released into the environment where they are used or produced, possibly entering air, water, soil or the human digestive system when consumed, inhaled or via the skin.[11][12] Despite the banning and phase out of several forms of PBDEs, many consumer products still contain them in the 21st century, and represent potential exposure sources, including furniture and other consumer products containing polyurethane foam, appliances, pipes, plastics, and old electronic equipment.[11][13]
Generally, governments have determined that PBDEs are not harmful to human health in the exposure amounts assessed.[11][12][14] Ingestion of house dust accounts for 80–90% of total PBDE exposure, while the remaining exposure occurs from food ingestion.[11][12] PBDE-contaminated foods, particularly those high in fat content, such as fatty meats or fish, are possible sources of exposure.[11] In breastfeeding infants, breast milk may be an exposure source because PBDEs can be present in the mother and her milk.[11] Various other food items may contain PBDEs, including meat, meat products, dairy products, and seafood.[11][14]
PBDEs have not been detected beyond trace levels in water.[11] In the environment, soils and sediments are the major deposits for PBDEs.[11] PBDEs can enter soil from discarded products, such as in landfills. As biosolids (sewage) may contain PBDEs, exposure from soils or farmlands that have been fertilized with biosolids may occur.[11] Wildlife may have exposure by consuming foods containing PBDEs, whereas organisms that live in sediments may be contaminated by PBDEs.[12]
Excretion
[edit]PBDEs and their metabolites are excreted mainly in the feces and some in the urine.[11] Owing to their deposition in body fat stores, some PBDEs remain in the body for many years, and may enter the bodies of unborn babies via the placenta.[11]
Research on health effects
[edit]Nothing certain has been established about the effects of PBDEs on human health.[11][12][14] Most information regarding toxicity of PBDEs and their metabolites is from early-stage animal studies.[14] Evidence for PBDE-mediated effects from human studies in systems other than the developing nervous system, such as in cancer development, is inconclusive or non-existent.[11] Particularly for the potential effects of PBDEs on the developing fetus, research has focused on the health status of mothers and gestational age of the infant.[15]
Sediment contamination
[edit]Increasing environmental concentrations and changing distributions of PBDEs in sediments of the Clyde River Estuary in Scotland, UK have been assessed.[16] Analysis of six sediment cores each of 1 m depth from Glasgow city to Greenock revealed that total concentrations increased toward the river bed surface (0–10 cm). Amounts of PBDE ranged from 1 to 2,645 µg/kg (dry wt. sediment) with a mean of 287 µg/kg (dry wt. sediment).[16] Down-core PBDE congener profiles showed that higher concentrations were due to elevated levels of BDE-209. The majority of the sediment records clearly showed a change from mainly lower molecular weight BDEs 47,99, 183, 153 at lower depths to BDE-209 near the surface, a change in congener and homologue group patterns that corresponds to the restrictions of penta- and octaBDE commercial mixtures under EU law in 2004–2006.
While biodegradation is not considered the main pathway for PBDEs, photolysis and pyrolysis can be of interest in studies of transformation of PBDEs.[17][18]
Regulations of PBDEs
[edit]United States
[edit]In August 2003, the State of California outlawed the sale of penta- and octaBDE and products containing them, effective 1 January 2008.[19] PBDEs are ubiquitous in the environment, and, according to the EPA, exposure may pose health risks. According to U.S. EPA's Integrated Risk Information System, evidence indicates that PBDEs may possess liver toxicity, thyroid toxicity, and neurodevelopmental toxicity.[20][21] In June 2008, the U.S. EPA set a safe daily exposure level ranging from 0.1 to 7 μg/kg body weight per day for the four most common PBDE congeners.[20][21][22][23] In April 2007, the legislature of the state of Washington passed a bill banning the use of PBDEs.[24] The State of Maine Department of Environmental Protection has restrictions on PBDEs, and in 2008, the legislature passed a bill phasing out the use of decaBDE.[25]
The U.S. importers and manufacturers of PBDEs withdrew pentaBDE and octaBDE from sale in 2004, and decaBDE from sale by the end of 2013.[7]: 10 [26] In November 2024, the EPA added decaBDE to the Toxic Substances Control Act to prohibit release into water during manufacturing, processing or distribution in commerce of decaBDE and decaBDE-containing products, and a phase-out of processing and distribution of wire and cable insulation containing decaDBE for nuclear power facilities.[27]
Canada
[edit]Since 2012, PBDEs are among chemicals prohibited from manufacture, use, sale, offer for sale or import, as regulated in the Prohibition of Certain Toxic Substances Regulations of the 1999 Canadian Environmental Protection Act.[28] PBDEs are regarded in the regulation as "toxic to the environment and/or human health, are generally persistent, bioaccumulative, and/or inherently toxic."[28]
European Union
[edit]The European Union decided to ban the use of two classes of flame retardants, in particular, PBDEs and polybrominated biphenyls (PBBs) in electric and electronic devices.[13] This ban was formalised in the RoHS Directive, and an upper limit of 1 g/kg for the sum of PBBs and PBDEs was set. In February 2009, the Institute for Reference Materials and Measurements released two certified reference materials to help analytical laboratories better detect these two classes of flame retardants. The reference materials were custom-made to contain all relevant PBDEs and PBBs at levels close to the legal limit.[13]
International
[edit]At an international level, in May 2009 the Parties of the Stockholm Convention on Persistent Organic Pollutants (POPs) decided to list commercial pentaBDE and commercial octaBDE as POP substances. This listing is due to the properties of hexaBDE and heptaBDE, which are components of commercial octaBDE, and to the properties of tetraBDE and pentaBDE, which are the main components of commercial pentaBDE.[29] In 2017, it was decided to also list decaBDE.[4][30]
Alternatives
[edit]Major decaBDE producers have switched to manufacturing decabromodiphenyl ethane, a structurally related compound that has also come under suspicion as an environmental pollutant.[2]: 21 Non-halogenated alternatives also exist.[2][26]
References
[edit]- ^ Stapleton HM, Klosterhaus S, Keller A, Ferguson PL, van Bergen S, Cooper E, Webster TF, Blum A (2011). "Identification of flame retardants in polyurethane foam collected from baby products". Environ. Sci. Technol. 45 (12): 5323–31. Bibcode:2011EnST...45.5323S. doi:10.1021/es2007462. PMC 3113369. PMID 21591615.
- ^ a b c Beard, Adrian; Battenberg, Christian; Sutker, Burton J. (2021). "Flame Retardants". Ullmann's Encyclopedia of Industrial Chemistry. doi:10.1002/14356007.a11_123.pub2. ISBN 978-3-527-30385-4. S2CID 261178139.
- ^ "Governments unite to step-up reduction on global DDT reliance and add nine new chemicals under international treaty" (Press release). Geneva: Secretariat of the Stockholm Convention. 8 May 2009. Archived from the original on 7 August 2023.
- ^ a b "C.N.766.2017.TREATIES-XXVII.15 (Depositary Notification) | Amendments to annexes A and C" (PDF). Stockholm Convention. United Nations. 18 December 2017. CN.766.2017. Archived from the original (PDF) on 26 April 2018.
- ^ Frank Rahman; et al. (2001). "Polybrominated diphenyl ether (PBDE) flame retardants". Science of the Total Environment. 275 (1–3): 1–17. Bibcode:2001ScTEn.275....1R. doi:10.1016/s0048-9697(01)00852-x. PMID 11482396.
- ^ Kellyn S. Betts (7 December 2001). "Rapidly rising PBDE levels in North America". Environmental Science & Technology. Archived from the original on 7 November 2002.
- ^ a b c "Toxicological Profile for Polybrominated Diphenyl Ethers (PBDEs)" (PDF). 22 March 2017. Archived from the original (PDF) on 11 August 2024. Retrieved 8 September 2024.
- ^ Darnerud, P O; Eriksen, G S; Jóhannesson, T; Larsen, P B; Viluksela, M (2001). "Polybrominated diphenyl ethers: occurrence, dietary exposure, and toxicology". Environmental Health Perspectives. 109 (suppl 1): 49–68. Bibcode:2001EnvHP.109S..49D. doi:10.1289/ehp.01109s149. ISSN 0091-6765. PMC 1240542. PMID 11250805.
- ^ "Guidance for the inventory of polybrominated diphenyl ethers (PBDEs) listed under the Stockholm Convention on Persistent Organic Pollutants (draft, revised Jan 2017)" (PDF). chm.pops.int. Secretariat of the Stockholm Convention. January 2017. Retrieved 12 September 2024.
- ^ Abbasi, Golnoush; Li, Li; Breivik, Knut (4 June 2019). "Global Historical Stocks and Emissions of PBDEs". Environmental Science & Technology. 53 (11): 6330–6340. Bibcode:2019EnST...53.6330A. doi:10.1021/acs.est.8b07032. hdl:11250/2611702. PMID 31083912.
- ^ a b c d e f g h i j k l m n "Public Health Statement for PBDEs". Agency for Toxic Substances and Disease Registry, US Centers for Disease Control and Prevention. 8 May 2017. Retrieved 24 December 2024.
- ^ a b c d e "Polybrominated diphenyl ethers (PBDEs) – information sheet". Health Canada, Government of Canada. 14 September 2023. Retrieved 24 December 2024.
- ^ a b c "Brominated flame retardants". European Food Safety Authority. 23 October 2024. Retrieved 24 December 2024.
- ^ a b c d EFSA Panel on Contaminants in the Food Chain (24 January 2024). "Update of the risk assessment of polybrominated diphenyl ethers (PBDEs) in food". EFSA Journal. 22 (1) e8497. doi:10.2903/j.efsa.2024.8497. PMC 10807361. PMID 38269035.
- ^ Wang Z, Zhang C, Williams PL, et al. (June 2022). "Polybrominated diphenyl ethers in early pregnancy and preterm birth: Findings from the NICHD Fetal Growth Studies". International Journal of Hygiene and Environmental Health. 243 113978. Bibcode:2022IJHEH.24313978W. doi:10.1016/j.ijheh.2022.113978. PMC 9302707. PMID 35569252.
- ^ a b Vane, Christopher H.; Ma, Yun-Juan; Chen, She-Jun; Mai, Bi-Xian (2009). "Increasing polybrominated diphenyl ether (PBDE) contamination in sediment cores from the inner Clyde Estuary, UK" (PDF). Environmental Geochemistry and Health. 32 (1): 13–21. doi:10.1007/s10653-009-9261-6. ISSN 0269-4042. PMID 19347590. S2CID 102768.
- ^ Hutzinger O; Thoma, H.; et al. (1987). "Polybrominated dibenzodioxins and dibenzofurans". Chemosphere. 16 (8–9): 1877–1880. Bibcode:1987Chmsp..16.1877H. doi:10.1016/0045-6535(87)90181-0.
- ^ Watanabe I; Kashimoto, Takashi; Tatsukawa, Ryo; et al. (1987). "Polybrominated diphenyl ethers in marine fish, shellfish and river sediments in Japan". Chemosphere. 16 (10–12): 2389–2396. Bibcode:1987Chmsp..16.2389W. doi:10.1016/0045-6535(87)90297-9.
- ^ "BILL NUMBER: AB 302, An act to add Chapter 10 (commencing with Section 108920) to Part 3 of Division 104 of the Health and Safety Code, relating to toxic substances". www.leginfo.ca.gov.
- ^ a b US Environmental Protection Agency. Toxicological Profile for Decabromodiphenyl ether (BDE-209), Integrated Risk Information System, June 2008.
- ^ a b US Environmental Protection Agency. Toxicological Profile for 2,2',4,4',5-Pentabromodiphenyl ether (BDE-99), Integrated Risk Information System, June 2008.
- ^ US Environmental Protection Agency. Toxicological Profile for 2,2',4,4'-Tetrabromodiphenyl ether (BDE-47), Integrated Risk Information System, June 2008.
- ^ US Environmental Protection Agency. Toxicological Profile for 2,2',4,4',5,5'-Hexabromodiphenyl ether (BDE-153), Integrated Risk Information System, June 2008.
- ^ "Chemical ban puts industry on the defensive." State of Washington bans use of PBDEs.
- ^ "Restrictions on sale and distribution of brominated flame retardants". Maine Legislature. 1 January 2006. Retrieved 26 December 2024.
- ^ a b "Partnership to Evaluate Flame Retardant Alternatives to DecaBDE". 31 January 2014. Archived from the original on 17 March 2015. Retrieved 8 September 2024.
- ^ "Decabromodiphenyl Ether and Phenol, Isopropylated Phosphate (3:1); Revision to the Regulation of Persistent, Bioaccumulative, and Toxic Chemicals Under the Toxic Substances Control Act (TSCA)". Federal Register, 40 CFR Part 751, Environmental Protection Agency. 19 November 2024. Retrieved 26 December 2024.
- ^ a b "Prohibition of Certain Toxic Substances Regulations, 2012: frequently asked questions". Environment and Climate Change Canada, Government of Canada. 8 March 2022. Retrieved 26 December 2024.
- ^ House, Stockholm Convention Clearing. "Information on the 16 chemicals added to the Stockholm Convention".
- ^ Sharkey, Martin; Harrad, Stuart; Abou-Elwafa Abdallah, Mohamed; Drage, Daniel S.; Berresheim, Harald (2020). "Phasing-out of legacy brominated flame retardants: The UNEP Stockholm Convention and other legislative action worldwide". Environment International. 144 106041. Bibcode:2020EnInt.14406041S. doi:10.1016/j.envint.2020.106041. hdl:10379/16242. PMID 32822924.
External links
[edit]- U.S. EPA. An Exposure Assessment of Polybrominated Diphenyl Ethers. U.S. Environmental Protection Agency, Washington, DC, EPA/600/R-08/086F, 2010
- Sandy, Martha. Polybrominated Diphenyl Ethers: Recommendations to Reduce Exposure in California. Office of Environmental Health Hazard Assessment. 25 Apr. 2008
- Polybrominated diphenylethers (PBDEs) | U.S. Environmental Protection Agency
Polybrominated diphenyl ethers
View on GrokipediaChemical Properties and Classes
Molecular Structure and Nomenclature
Polybrominated diphenyl ethers (PBDEs) are organobromine compounds featuring two phenyl rings linked by an ether (oxygen) bridge, with bromine atoms substituting for hydrogen atoms on the aromatic rings. The general molecular formula is C₁₂H_{10-n}Br_nO, where n represents the number of bromine atoms, typically ranging from 2 to 10, yielding 209 possible congeners due to varying positions of substitution on the rings. This structure resembles polychlorinated biphenyls (PCBs) but incorporates an ether linkage instead of a biphenyl bond, influencing their chemical stability and environmental behavior.[9][10] PBDEs are categorized by bromination degree into classes such as tetra-BDEs, penta-BDEs, hexa-BDEs, and up to deca-BDEs, with commercial formulations often dominated by mixtures of specific homologues. Individual congeners receive unique identifiers using the Ballschmiter-Zell numbering system, developed in 1980, which sequences them in ascending order based on bromine count and substitution patterns, denoted as BDE-number (e.g., BDE-47 for 2,2',4,4'-tetrabromodiphenyl ether, BDE-99 for 2,2',4,4',5-pentabromodiphenyl ether). This IUPAC-compatible nomenclature standardizes reporting in toxicological and analytical contexts, enabling precise tracking of dominant environmental contaminants like BDE-47 and BDE-209.[9][10][11] The positional isomers arise from bromine attachments at ortho, meta, or para sites relative to the ether oxygen, with symmetric and asymmetric configurations affecting properties like vapor pressure and solubility; for instance, fully brominated deca-BDE (BDE-209) exhibits lower volatility compared to tetra-BDEs. Systematic naming follows diphenyl ether conventions, specifying bromine locants (e.g., 2,2',4,4'-tetrabromo-1,1'-oxybisbenzene).[9][12]Commercial Mixtures and Congeners
Commercial polybrominated diphenyl ethers (PBDEs) were produced and sold as technical mixtures containing multiple congeners, rather than isolated compounds, due to the synthetic processes yielding complex compositions. The primary formulations included pentaBDE, octaBDE, and decaBDE mixtures, each dominated by specific bromination levels and key congeners identified through gas chromatography-mass spectrometry analyses. Up to 39 discrete PBDE congeners have been detected across these mixtures.[9] PentaBDE mixtures, such as DE-71 (Great Lakes Chemical) and Bromkal 70-5DE (Bromine Compounds Ltd.), comprised mainly tetrabrominated (24–38%), pentabrominated (50–62%), and hexabrominated (4–8%) diphenyl ethers, with trace tribrominated species. Dominant congeners were BDE-47 (25–37%), BDE-99 (35–50%), and BDE-100 (6–10%), alongside lesser amounts of BDE-153, BDE-154, and others like BDE-28, BDE-66, and BDE-183.[9][13] OctaBDE products, exemplified by DE-79 (Great Lakes Chemical), featured predominantly hepta- and octabrominated congeners, with contributions from hexa- and nonabrominated homologues and trace decabrominated BDE-209. Key congeners included BDE-183 (approximately 40%), BDE-197 (21%), BDE-196 (8%), and BDE-203 (5–35%), as well as BDE-153 and BDE-154.[9][13] DecaBDE mixtures, such as DE-83R (Great Lakes Chemical) and Saytex 102E (Albemarle), were primarily BDE-209 (97–97.5%), with the balance consisting of nonabrominated congeners BDE-206, BDE-207, and BDE-208, plus minor octabrominated impurities.[9][13]| Mixture | Major Congeners (% where specified) | Homologue Focus |
|---|---|---|
| PentaBDE | BDE-47 (25–37%), BDE-99 (35–50%), BDE-100 (6–10%) | Tetra-, penta-, hexaBDE |
| OctaBDE | BDE-183 (~40%), BDE-197 (21%), BDE-196 (8%) | Hexa-, hepta-, octa-, nonaBDE |
| DecaBDE | BDE-209 (97–97.5%), BDE-206/207/208 (remainder) | DecaBDE, nonaBDE |
History and Production
Early Development and Commercialization
Polybrominated diphenyl ethers (PBDEs) emerged as synthetic additive flame retardants during the 1960s, designed to imbue polymers with enhanced resistance to ignition and flame spread without excessive volatility or migration from host materials.[4] These compounds were synthesized by brominating diphenyl ether through stepwise addition of bromine atoms, yielding congeners with varying degrees of substitution (from mono- to deca-brominated forms), which were then formulated into technical mixtures for industrial application.[3] Early efforts focused on tetra- through octa-brominated variants for their balance of efficacy and processability in plastics and foams, supplanting prior brominated alternatives like polybrominated biphenyls (PBBs) that had demonstrated instability in some uses.[14] Commercial production scaled up in the late 1970s, primarily by U.S.-based firms such as Great Lakes Chemical Corporation (manufacturer of DE-60F for octaBDE, DE-71 for pentaBDE, and DE-83R for decaBDE) and Albemarle Corporation (formerly Ethyl Corporation), which together dominated North American output and accounted for nearly all global supply until the 1990s.[15][14] These mixtures, containing 30–68% bromine by weight, were marketed for their cost-effectiveness and compatibility with polyurethane flexible foams, high-impact polystyrene, and acrylonitrile-butadiene-styrene (ABS) resins, enabling compliance with emerging fire safety standards like California's TB 117 for furniture upholstery introduced in 1975.[8] Initial annual global production volumes were modest, estimated in the thousands of metric tons, but demand surged as regulations mandated retardants in electronics, textiles, and building materials to mitigate risks from flammable synthetics.[4] By the early 1980s, PBDEs had achieved broad commercialization, with decaBDE comprising over 80% of U.S. production due to its thermal stability in high-temperature applications like circuit boards, while lower-brominated mixtures targeted flexible foams prone to smoldering ignition.[8] Israel and later China entered manufacturing in the 1980s, but U.S. firms retained primacy through patented formulations and supply chains integrated with downstream industries.[8] This phase marked PBDEs' transition from laboratory curiosities to ubiquitous additives, driven by empirical testing demonstrating reduced peak heat release rates in treated materials under standardized flammability assays, though long-term environmental fate was not rigorously assessed at commercialization.[16]Production Trends and Phase-Outs
Commercial production of polybrominated diphenyl ethers (PBDEs) commenced in the 1970s, driven by demand for additive flame retardants in plastics, textiles, and electronics, with volumes expanding significantly through the 1980s and 1990s as formulations like pentaBDE, octaBDE, and especially decaBDE gained market share.[17] By 1992, global annual production approached 40,000 tonnes, with decaBDE comprising the majority due to its stability and efficacy in high-temperature applications.[18] Cumulative historical output is estimated at approximately 175 kilotonnes for commercial pentaBDE mixtures, 130 kilotonnes for octaBDE, and 1,600 kilotonnes for decaBDE, reflecting decaBDE's dominance at over 80% of total PBDE production.[8] DecaBDE alone reached an estimated 1.1 million tonnes by 2005, underscoring the scale prior to regulatory interventions.[19] Environmental persistence, bioaccumulation, and emerging toxicity data prompted phase-outs starting in the early 2000s, initially targeting lower-brominated mixtures. In the United States, the three primary manufacturers voluntarily agreed to discontinue production of pentaBDE and octaBDE by December 31, 2004, following negotiations with the Environmental Protection Agency (EPA); the EPA subsequently promulgated Significant New Use Rules (SNURs) in 2006 to require notification for any manufacturing, import, or processing resumption.[20] In the European Union, pentaBDE and octaBDE commercial mixtures were banned for use in new products from August 1, 2004, under Directive 2003/11/EC, aligning with early restrictions under the Stockholm Convention framework, where tetra-, penta-, and hexaBDE congeners (core components of those mixtures) were listed in Annex A in 2009.[21] DecaBDE production persisted longer owing to fewer initial restrictions and its perceived lower bioavailability, but faced escalating controls; it was added to the Stockholm Convention's Annex A in 2017, effective from 2019, prohibiting production and use except under specific exemptions.[22] In the US, decaBDE manufacturers announced voluntary phase-out by 2013, complemented by EPA risk management actions.[20] Post-phase-out, production shifted to regions with laxer regulations, such as parts of Asia, though global volumes declined sharply in regulated markets; recent EU amendments under the POPs Regulation (effective 2025) further tighten concentration limits in recycled materials to 350 mg/kg by December 30, 2025, and 200 mg/kg by 2027, addressing legacy contamination in waste streams.[23] These measures have correlated with observed reductions in PBDE emissions and environmental levels in monitored regions, though historical stocks continue to release congeners.[8]Applications and Efficacy
Primary Uses in Products
PBDEs were extensively used as additive flame retardants in polyurethane foams for upholstered furniture, mattresses, and automotive seating to reduce flammability and meet fire safety standards such as California's TB 117.[20][24] The pentaBDE commercial mixture, comprising mainly tetra- and penta-brominated congeners like BDE-47 and BDE-99, was incorporated at levels up to 10-15% by weight in flexible polyurethane foam, which constitutes the primary cushioning material in these products.[20][25] In electronics and electrical applications, PBDEs, particularly the decaBDE formulation (primarily BDE-209), were added to high-impact polystyrene housings for televisions, computers, and other consumer devices, as well as to wire and cable insulation, to enhance fire resistance in polymeric materials.[20][11] OctaBDE mixtures, containing hexa- through octa-brominated congeners, found use in acrylonitrile-butadiene-styrene (ABS) plastics for business machine casings and similar equipment.[20] Additional applications included textiles such as draperies, carpet padding, and upholstery fabrics, where PBDEs helped achieve compliance with standards like NFPA 701 for flame retardancy, though usage volumes were lower compared to foams and plastics.[24][26] These uses spanned consumer goods produced from the 1970s through the early 2000s, prior to voluntary phase-outs by major manufacturers in response to environmental and health concerns.[11][24]Fire Safety Benefits and Supporting Evidence
Polybrominated diphenyl ethers (PBDEs), particularly the penta-BDE formulation, have been incorporated into polyurethane foams used in upholstered furniture and mattresses to enhance resistance to ignition from small open flames or smoldering sources, such as cigarettes, thereby aiming to delay fire initiation and growth.[24] These additives function primarily in the gas phase during thermal decomposition, releasing bromine radicals that scavenge highly reactive hydrogen and hydroxyl radicals, interrupting the propagation of combustion chain reactions and reducing flame spread.[27] This mechanism has been demonstrated in bench-scale tests, where PBDE-treated materials exhibit prolonged time-to-ignition and lower peak heat release rates compared to untreated counterparts under controlled heating conditions.[16] In electronics, such as television enclosures made from high-impact polystyrene, decabromodiphenyl ether (deca-BDE) contributes to fire containment by slowing combustion propagation, with estimates indicating that brominated flame retardants in these applications prevent approximately 190 fatalities annually in the United States by averting rapid fire spread in electrical faults or external ignitions.[28] Full-scale incident data, including the 2005 Air Canada Flight 581 crash fire in Toronto, attribute survivor escapes to the flame-retardant properties of interior materials containing brominated compounds, which limited fire intensity and provided critical evacuation time.[28] Broader regulatory impacts, such as the United Kingdom's 1988 furniture fire safety standards mandating flame retardants (including brominated types), correlate with reductions in fire-related deaths and injuries, saving an estimated 230 lives and preventing over 2,000 injuries per year.[28] Supporting test data from the National Institute of Standards and Technology (NIST) indicate that flame-retardant treatments, including those akin to PBDE applications, can extend escape times by up to 15-fold in simulated compartment fires by mitigating early heat release and flashover risks.[28] However, efficacy in upholstered furniture composites is context-dependent; while PBDEs enable compliance with standards like California's Technical Bulletin 117 (TB 117) for smoldering resistance, full-scale flaming fire tests reveal limited reductions in overall fire growth rates or total heat release, as fabric coverings and foam charring often dominate behavior.[29] Peer-reviewed evaluations, including those by fire researcher Vytenis Babrauskas, confirm no statistically significant differences in peak heat release or ignition propensity between TB 117-compliant PBDE-treated foams and untreated foams in open-flame scenarios, underscoring that benefits are most pronounced against smoldering ignitions rather than propagating flaming fires.[29]Environmental Behavior
Persistence and Transport Mechanisms
Polybrominated diphenyl ethers (PBDEs) demonstrate significant environmental persistence, particularly lower and medium brominated congeners such as BDE-47, BDE-99, and BDE-153, with estimated half-lives in air, water, soil, and sediment ranging from 2.9 to 11.7 years based on human biomonitoring and environmental modeling data.[30] [31] Higher brominated congeners like BDE-209 exhibit shorter half-lives, approximately 2 weeks in water or 30 minutes under photolytic conditions, though they still accumulate in sediments due to low volatility and strong sorption to particles.[32] [17] This persistence arises from their resistance to hydrolysis, photolysis, and biodegradation, leading to accumulation in soils and sediments where they bind tightly to organic carbon, with partitioning coefficients indicating minimal remobilization.[33] [34] Transport mechanisms for PBDEs primarily involve atmospheric pathways, enabled by their semi-volatility and gas-particle partitioning, which facilitate long-range atmospheric transport (LRAT) of lower congeners to remote regions such as the Arctic.[35] [36] Lighter PBDE components predominate in such distant depositions, as evidenced by field measurements and multimedia fate models comparing characteristic travel distances, with aerosol-mediated processes enhancing regional and global dispersal via wet and dry deposition.[36] [37] In aquatic systems, PBDEs exhibit higher concentrations in sediments than overlying water—often by a factor of three—due to hydrophobic sorption and settling, limiting aqueous transport but promoting benthic accumulation.[38] Soil deposition from atmospheric inputs further contributes to terrestrial persistence, with minimal leaching into groundwater owing to strong adsorption.[34] Overall, these dynamics classify lower PBDEs as persistent organic pollutants capable of widespread environmental cycling, though higher congeners are more localized due to reduced volatility.[39]Bioaccumulation Dynamics
Polybrominated diphenyl ethers (PBDEs) bioaccumulate in organisms primarily due to their hydrophobic nature and high octanol-water partition coefficients (log Kow), which range from 5.9 to 10 across congeners, promoting partitioning into lipid tissues over aqueous elimination.[40] [41] Lower-brominated congeners, such as BDE-47 and BDE-99, exhibit stronger bioaccumulation potential owing to greater bioavailability and resistance to metabolic debromination, with bioconcentration factors (BCFs) in fish like Cyprinus carpio exceeding 66,000 for BDE-47.[42] [43] This uptake occurs via direct absorption from water across gills or skin and dietary exposure, where assimilation efficiencies can reach 80-90% in aquatic species.[44] Biomagnification, the net increase in PBDE concentrations across trophic levels, is a hallmark of their dynamics in food webs, driven by efficient trophic transfer and minimal excretion.[45] In freshwater systems like Lake Taihu, China, trophic magnification factors (TMFs) for dominant congeners ranged from 1.5 to 3.2, indicating pronounced amplification from plankton to predatory fish.[45] Marine and grassland ecosystems show comparable patterns, with TMFs often exceeding 1 for lower-brominated PBDEs, though higher-brominated variants (e.g., BDE-209) display reduced biomagnification due to lower assimilation and potential fecal egestion.[46] [47] Log bioaccumulation factors (BAFs) correlate parabolically with log Kow, peaking at intermediate values (around 6-7) before declining for highly brominated congeners, reflecting uptake limitations and enhanced biotransformation.[44] Factors influencing these dynamics include organism lipid content, which positively correlates with PBDE burdens, and environmental variables like temperature, which can modulate metabolic clearance rates.[48] In terrestrial food chains, plant uptake is limited, but biomagnification occurs via herbivore-to-predator transfer, with soil-earthworm BAFs highlighting congener-specific bioavailability.[49] Overall, PBDE persistence in biota—half-lives spanning weeks to years in mammals—sustains elevated body burdens, particularly in top predators like seals and humans, where maternal transfer via milk further propagates accumulation across generations.[50] [51]Exposure Assessment
Human Exposure Routes and Levels
Humans are exposed to polybrominated diphenyl ethers (PBDEs) primarily through ingestion of indoor house dust and contaminated food, inhalation of contaminated indoor air, and dermal contact with dust or treated products.[52][53] In the United States, ingestion of house dust represents 80–90% of total PBDE exposure for the general population, with higher contributions in households containing older electronics, furniture, and polyurethane foam.[52] This route is particularly significant for young children due to frequent hand-to-mouth behaviors and crawling on floors.[53] Dietary ingestion, mainly from fatty fish, meat, and dairy products bioaccumulated with lower-brominated congeners like BDE-47 and BDE-99, constitutes a key pathway, especially in regions with elevated environmental contamination such as parts of Europe where it predominates over dust exposure.[52][5] Inhalation arises from volatilization (off-gassing) of PBDEs from indoor sources like electronics and textiles, with dust-bound particles also contributing via resuspended aerosols.[52] Dermal absorption through skin contact with dust or direct handling of PBDE-containing materials is generally minor but can be relevant in occupational settings involving recycling or manufacturing residues.[52] Serum PBDE concentrations in the U.S. population peaked around the early 2000s prior to voluntary phase-outs. In the National Health and Nutrition Examination Survey (NHANES) 2003–2004, median total PBDE levels (sum of 10 congeners including BDE-47, -99, -100, and -153) were measured as follows:| Demographic Group | Median ΣPBDE (ng/g lipid weight) |
|---|---|
| Women aged 16–49 years | 44 |
| Adolescents aged 12–17 years | 52.9 |

