Hubbry Logo
search
search button
Sign in
Historyarrow-down
starMorearrow-down
Hubbry Logo
search
search button
Sign in
Cantic 5-cube
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Cantic 5-cube Wikipedia article. Here, you can discuss, collect, and organize anything related to Cantic 5-cube. The purpose of the hub is to connect people, foster deeper knowledge, and help improve the root Wikipedia article.
Add your contribution
Inside this hub
Cantic 5-cube
Truncated 5-demicube
Cantic 5-cube

D5 Coxeter plane projection
Type uniform 5-polytope
Schläfli symbol h2{4,3,3,3}
t{3,32,1}
Coxeter-Dynkin diagram =
4-faces 42 total:
16 r{3,3,3}
16 t{3,3,3}
10 t{3,3,4}
Cells 280 total:
80 {3,3}
120 t{3,3}
80 {3,4}
Faces 640 total:
480 {3}
160 {6}
Edges 560
Vertices 160
Vertex figure
( )v{ }×{3}
Coxeter groups D5, [32,1,1]
Properties convex

In geometry of five dimensions or higher, a cantic 5-cube, cantihalf 5-cube, truncated 5-demicube is a uniform 5-polytope, being a truncation of the 5-demicube. It has half the vertices of a cantellated 5-cube.

Cartesian coordinates

[edit]

The Cartesian coordinates for the 160 vertices of a cantic 5-cube centered at the origin and edge length 62 are coordinate permutations:

(±1,±1,±3,±3,±3)

with an odd number of plus signs.

Alternate names

[edit]
  • Cantic penteract, truncated demipenteract
  • Truncated hemipenteract (thin) (Jonathan Bowers)[1]

Images

[edit]
orthographic projections
Coxeter plane B5
Graph
Dihedral symmetry [10/2]
Coxeter plane D5 D4
Graph
Dihedral symmetry [8] [6]
Coxeter plane D3 A3
Graph
Dihedral symmetry [4] [4]
[edit]

It has half the vertices of the cantellated 5-cube, as compared here in the B5 Coxeter plane projections:


Cantic 5-cube

Cantellated 5-cube

This polytope is based on the 5-demicube, a part of a dimensional family of uniform polytopes called demihypercubes for being alternation of the hypercube family.

Dimensional family of cantic n-cubes
n 3 4 5 6 7 8
Symmetry
[1+,4,3n-2]
[1+,4,3]
= [3,3]
[1+,4,32]
= [3,31,1]
[1+,4,33]
= [3,32,1]
[1+,4,34]
= [3,33,1]
[1+,4,35]
= [3,34,1]
[1+,4,36]
= [3,35,1]
Cantic
figure
Coxeter
=

=

=

=

=

=
Schläfli h2{4,3} h2{4,32} h2{4,33} h2{4,34} h2{4,35} h2{4,36}

There are 23 uniform 5-polytope that can be constructed from the D5 symmetry of the 5-demicube, of which are unique to this family, and 15 are shared within the 5-cube family.

D5 polytopes

h{4,3,3,3}

h2{4,3,3,3}

h3{4,3,3,3}

h4{4,3,3,3}

h2,3{4,3,3,3}

h2,4{4,3,3,3}

h3,4{4,3,3,3}

h2,3,4{4,3,3,3}

Notes

[edit]

References

[edit]
[edit]
Add your contribution
Related Hubs