Classical mechanics is the branch of physics used to describe the motion of macroscopic objects.[ 1] It is the most familiar of the theories of physics. The concepts it covers, such as mass , acceleration , and force , are commonly used and known.[ 2] The subject is based upon a three-dimensional Euclidean space with fixed axes, called a frame of reference. The point of concurrency of the three axes is known as the origin of the particular space.[ 3]
Classical mechanics utilises many equations —as well as other mathematical concepts—which relate various physical quantities to one another. These include differential equations , manifolds , Lie groups , and ergodic theory .[ 4] This article gives a summary of the most important of these.
This article lists equations from Newtonian mechanics , see analytical mechanics for the more general formulation of classical mechanics (which includes Lagrangian and Hamiltonian mechanics ).
Classical mechanics [ edit ]
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Linear, surface, volumetric mass density
λ or μ (especially in acoustics , see below) for Linear, σ for surface, ρ for volume.
m
=
∫
λ
d
ℓ
{\displaystyle m=\int \lambda \,\mathrm {d} \ell }
m
=
∬
σ
d
S
{\displaystyle m=\iint \sigma \,\mathrm {d} S}
m
=
∭
ρ
d
V
{\displaystyle m=\iiint \rho \,\mathrm {d} V}
kg m−n , n = 1, 2, 3
M L−n
Moment of mass[ 5]
m (No common symbol)
Point mass:
m
=
r
m
{\displaystyle \mathbf {m} =\mathbf {r} m}
Discrete masses about an axis
x
i
{\displaystyle x_{i}}
:
m
=
∑
i
=
1
N
r
i
m
i
{\displaystyle \mathbf {m} =\sum _{i=1}^{N}\mathbf {r} _{i}m_{i}}
Continuum of mass about an axis
x
i
{\displaystyle x_{i}}
:
m
=
∫
ρ
(
r
)
x
i
d
r
{\displaystyle \mathbf {m} =\int \rho \left(\mathbf {r} \right)x_{i}\mathrm {d} \mathbf {r} }
kg m
M L
Center of mass
r com
(Symbols vary)
i -th moment of mass
m
i
=
r
i
m
i
{\displaystyle \mathbf {m} _{i}=\mathbf {r} _{i}m_{i}}
Discrete masses:
r
c
o
m
=
1
M
∑
i
r
i
m
i
=
1
M
∑
i
m
i
{\displaystyle \mathbf {r} _{\mathrm {com} }={\frac {1}{M}}\sum _{i}\mathbf {r} _{i}m_{i}={\frac {1}{M}}\sum _{i}\mathbf {m} _{i}}
Mass continuum:
r
c
o
m
=
1
M
∫
d
m
=
1
M
∫
r
d
m
=
1
M
∫
r
ρ
d
V
{\displaystyle \mathbf {r} _{\mathrm {com} }={\frac {1}{M}}\int \mathrm {d} \mathbf {m} ={\frac {1}{M}}\int \mathbf {r} \,\mathrm {d} m={\frac {1}{M}}\int \mathbf {r} \rho \,\mathrm {d} V}
m
L
2-Body reduced mass
m 12 , μ Pair of masses = m 1 and m 2
μ
=
m
1
m
2
m
1
+
m
2
{\displaystyle \mu ={\frac {m_{1}m_{2}}{m_{1}+m_{2}}}}
kg
M
Moment of inertia (MOI)
I
Discrete Masses:
I
=
∑
i
m
i
⋅
r
i
=
∑
i
|
r
i
|
2
m
{\displaystyle I=\sum _{i}\mathbf {m} _{i}\cdot \mathbf {r} _{i}=\sum _{i}\left|\mathbf {r} _{i}\right|^{2}m}
Mass continuum:
I
=
∫
|
r
|
2
d
m
=
∫
r
⋅
d
m
=
∫
|
r
|
2
ρ
d
V
{\displaystyle I=\int \left|\mathbf {r} \right|^{2}\mathrm {d} m=\int \mathbf {r} \cdot \mathrm {d} \mathbf {m} =\int \left|\mathbf {r} \right|^{2}\rho \,\mathrm {d} V}
kg m2
M L2
Derived kinematic quantities [ edit ] Kinematic quantities of a classical particle: mass m , position r , velocity v , acceleration a .
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Velocity
v
v
=
d
r
d
t
{\displaystyle \mathbf {v} ={\frac {\mathrm {d} \mathbf {r} }{\mathrm {d} t}}}
m s−1
L T−1
Acceleration
a
a
=
d
v
d
t
=
d
2
r
d
t
2
{\displaystyle \mathbf {a} ={\frac {\mathrm {d} \mathbf {v} }{\mathrm {d} t}}={\frac {\mathrm {d} ^{2}\mathbf {r} }{\mathrm {d} t^{2}}}}
m s−2
L T−2
Jerk
j
j
=
d
a
d
t
=
d
3
r
d
t
3
{\displaystyle \mathbf {j} ={\frac {\mathrm {d} \mathbf {a} }{\mathrm {d} t}}={\frac {\mathrm {d} ^{3}\mathbf {r} }{\mathrm {d} t^{3}}}}
m s−3
L T−3
Jounce
s
s
=
d
j
d
t
=
d
4
r
d
t
4
{\displaystyle \mathbf {s} ={\frac {\mathrm {d} \mathbf {j} }{\mathrm {d} t}}={\frac {\mathrm {d} ^{4}\mathbf {r} }{\mathrm {d} t^{4}}}}
m s−4
L T−4
Angular velocity
ω
ω
=
n
^
d
θ
d
t
{\displaystyle {\boldsymbol {\omega }}=\mathbf {\hat {n}} {\frac {\mathrm {d} \theta }{\mathrm {d} t}}}
rad s−1
T−1
Angular Acceleration
α
α
=
d
ω
d
t
=
n
^
d
2
θ
d
t
2
{\displaystyle {\boldsymbol {\alpha }}={\frac {\mathrm {d} {\boldsymbol {\omega }}}{\mathrm {d} t}}=\mathbf {\hat {n}} {\frac {\mathrm {d} ^{2}\theta }{\mathrm {d} t^{2}}}}
rad s−2
T−2
Angular jerk
ζ
ζ
=
d
α
d
t
=
n
^
d
3
θ
d
t
3
{\displaystyle {\boldsymbol {\zeta }}={\frac {\mathrm {d} {\boldsymbol {\alpha }}}{\mathrm {d} t}}=\mathbf {\hat {n}} {\frac {\mathrm {d} ^{3}\theta }{\mathrm {d} t^{3}}}}
rad s−3
T−3
Derived dynamic quantities [ edit ] Angular momenta of a classical object.Left: intrinsic "spin" angular momentum S is really orbital angular momentum of the object at every point,right: extrinsic orbital angular momentum L about an axis,top: the moment of inertia tensor I and angular velocity ω (L is not always parallel to ω )[ 6] bottom: momentum p and its radial position r from the axis. The total angular momentum (spin + orbital) is J . General energy definitions [ edit ]
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Mechanical work due to a Resultant Force
W
W
=
∫
C
F
⋅
d
r
{\displaystyle W=\int _{C}\mathbf {F} \cdot \mathrm {d} \mathbf {r} }
J = N m = kg m2 s−2
M L2 T−2
Work done ON mechanical system, Work done BY
W ON , W BY
Δ
W
O
N
=
−
Δ
W
B
Y
{\displaystyle \Delta W_{\mathrm {ON} }=-\Delta W_{\mathrm {BY} }}
J = N m = kg m2 s−2
M L2 T−2
Potential energy
φ , Φ, U , V , Ep
Δ
W
=
−
Δ
V
{\displaystyle \Delta W=-\Delta V}
J = N m = kg m2 s−2
M L2 T−2
Mechanical power
P
P
=
d
E
d
t
{\displaystyle P={\frac {\mathrm {d} E}{\mathrm {d} t}}}
W = J s−1
M L2 T−3
Every conservative force has a potential energy . By following two principles one can consistently assign a non-relative value to U :
Wherever the force is zero, its potential energy is defined to be zero as well.
Whenever the force does work, potential energy is lost. Generalized mechanics [ edit ]
Quantity (common name/s)
(Common) symbol/s
Defining equation
SI units
Dimension
Generalized coordinates
q, Q
varies with choice
varies with choice
Generalized velocities
q
˙
,
Q
˙
{\displaystyle {\dot {q}},{\dot {Q}}}
q
˙
≡
d
q
/
d
t
{\displaystyle {\dot {q}}\equiv \mathrm {d} q/\mathrm {d} t}
varies with choice
varies with choice
Generalized momenta
p, P
p
=
∂
L
/
∂
q
˙
{\displaystyle p=\partial L/\partial {\dot {q}}}
varies with choice
varies with choice
Lagrangian
L
L
(
q
,
q
˙
,
t
)
=
T
(
q
˙
)
−
V
(
q
,
q
˙
,
t
)
{\displaystyle L(\mathbf {q} ,\mathbf {\dot {q}} ,t)=T(\mathbf {\dot {q}} )-V(\mathbf {q} ,\mathbf {\dot {q}} ,t)}
where
q
=
q
(
t
)
{\displaystyle \mathbf {q} =\mathbf {q} (t)}
and p = p (t ) are vectors of the generalized coords and momenta, as functions of time
J
M L2 T−2
Hamiltonian
H
H
(
p
,
q
,
t
)
=
p
⋅
q
˙
−
L
(
q
,
q
˙
,
t
)
{\displaystyle H(\mathbf {p} ,\mathbf {q} ,t)=\mathbf {p} \cdot \mathbf {\dot {q}} -L(\mathbf {q} ,\mathbf {\dot {q}} ,t)}
J
M L2 T−2
Action , Hamilton's principal function
S ,
S
{\displaystyle \scriptstyle {\mathcal {S}}}
S
=
∫
t
1
t
2
L
(
q
,
q
˙
,
t
)
d
t
{\displaystyle {\mathcal {S}}=\int _{t_{1}}^{t_{2}}L(\mathbf {q} ,\mathbf {\dot {q}} ,t)\mathrm {d} t}
J s
M L2 T−1
In the following rotational definitions, the angle can be any angle about the specified axis of rotation. It is customary to use θ , but this does not have to be the polar angle used in polar coordinate systems. The unit axial vector
n
^
=
e
^
r
×
e
^
θ
{\displaystyle \mathbf {\hat {n}} =\mathbf {\hat {e}} _{r}\times \mathbf {\hat {e}} _{\theta }}
defines the axis of rotation,
e
^
r
{\displaystyle \scriptstyle \mathbf {\hat {e}} _{r}}
= unit vector in direction of r ,
e
^
θ
{\displaystyle \scriptstyle \mathbf {\hat {e}} _{\theta }}
= unit vector tangential to the angle.
Translation
Rotation
Velocity
Average:
v
a
v
e
r
a
g
e
=
Δ
r
Δ
t
{\displaystyle \mathbf {v} _{\mathrm {average} }={\Delta \mathbf {r} \over \Delta t}}
Instantaneous:
v
=
d
r
d
t
{\displaystyle \mathbf {v} ={d\mathbf {r} \over dt}}
Angular velocity
ω
=
n
^
d
θ
d
t
{\displaystyle {\boldsymbol {\omega }}=\mathbf {\hat {n}} {\frac {{\rm {d}}\theta }{{\rm {d}}t}}}
Rotating rigid body :
v
=
ω
×
r
{\displaystyle \mathbf {v} ={\boldsymbol {\omega }}\times \mathbf {r} }
Acceleration
Average:
a
a
v
e
r
a
g
e
=
Δ
v
Δ
t
{\displaystyle \mathbf {a} _{\mathrm {average} }={\frac {\Delta \mathbf {v} }{\Delta t}}}
Instantaneous:
a
=
d
v
d
t
=
d
2
r
d
t
2
{\displaystyle \mathbf {a} ={\frac {d\mathbf {v} }{dt}}={\frac {d^{2}\mathbf {r} }{dt^{2}}}}
Angular acceleration
α
=
d
ω
d
t
=
n
^
d
2
θ
d
t
2
{\displaystyle {\boldsymbol {\alpha }}={\frac {{\rm {d}}{\boldsymbol {\omega }}}{{\rm {d}}t}}=\mathbf {\hat {n}} {\frac {{\rm {d}}^{2}\theta }{{\rm {d}}t^{2}}}}
Rotating rigid body:
a
=
α
×
r
+
ω
×
v
{\displaystyle \mathbf {a} ={\boldsymbol {\alpha }}\times \mathbf {r} +{\boldsymbol {\omega }}\times \mathbf {v} }
Jerk
Average:
j
a
v
e
r
a
g
e
=
Δ
a
Δ
t
{\displaystyle \mathbf {j} _{\mathrm {average} }={\frac {\Delta \mathbf {a} }{\Delta t}}}
Instantaneous:
j
=
d
a
d
t
=
d
2
v
d
t
2
=
d
3
r
d
t
3
{\displaystyle \mathbf {j} ={\frac {d\mathbf {a} }{dt}}={\frac {d^{2}\mathbf {v} }{dt^{2}}}={\frac {d^{3}\mathbf {r} }{dt^{3}}}}
Angular jerk
ζ
=
d
α
d
t
=
n
^
d
2
ω
d
t
2
=
n
^
d
3
θ
d
t
3
{\displaystyle {\boldsymbol {\zeta }}={\frac {{\rm {d}}{\boldsymbol {\alpha }}}{{\rm {d}}t}}=\mathbf {\hat {n}} {\frac {{\rm {d}}^{2}\omega }{{\rm {d}}t^{2}}}=\mathbf {\hat {n}} {\frac {{\rm {d}}^{3}\theta }{{\rm {d}}t^{3}}}}
Rotating rigid body:
j
=
ζ
×
r
+
α
×
a
{\displaystyle \mathbf {j} ={\boldsymbol {\zeta }}\times \mathbf {r} +{\boldsymbol {\alpha }}\times \mathbf {a} }
Translation
Rotation
Momentum
Momentum is the "amount of translation"
p
=
m
v
{\displaystyle \mathbf {p} =m\mathbf {v} }
For a rotating rigid body:
p
=
ω
×
m
{\displaystyle \mathbf {p} ={\boldsymbol {\omega }}\times \mathbf {m} }
Angular momentum
Angular momentum is the "amount of rotation":
L
=
r
×
p
=
I
⋅
ω
{\displaystyle \mathbf {L} =\mathbf {r} \times \mathbf {p} =\mathbf {I} \cdot {\boldsymbol {\omega }}}
and the cross-product is a pseudovector i.e. if r and p are reversed in direction (negative), L is not.
In general I is an order-2 tensor , see above for its components. The dot · indicates tensor contraction .
Force and Newton's 2nd law
Resultant force acts on a system at the center of mass, equal to the rate of change of momentum:
F
=
d
p
d
t
=
d
(
m
v
)
d
t
=
m
a
+
v
d
m
d
t
{\displaystyle {\begin{aligned}\mathbf {F} &={\frac {d\mathbf {p} }{dt}}={\frac {d(m\mathbf {v} )}{dt}}\\&=m\mathbf {a} +\mathbf {v} {\frac {{\rm {d}}m}{{\rm {d}}t}}\\\end{aligned}}}
For a number of particles, the equation of motion for one particle i is:[ 7]
d
p
i
d
t
=
F
E
+
∑
i
≠
j
F
i
j
{\displaystyle {\frac {\mathrm {d} \mathbf {p} _{i}}{\mathrm {d} t}}=\mathbf {F} _{E}+\sum _{i\neq j}\mathbf {F} _{ij}}
where p i = momentum of particle i , F ij = force on particle i by particle j , and F E = resultant external force (due to any agent not part of system). Particle i does not exert a force on itself.
Torque
Torque τ is also called moment of a force, because it is the rotational analogue to force:[ 8]
τ
=
d
L
d
t
=
r
×
F
=
d
(
I
⋅
ω
)
d
t
{\displaystyle {\boldsymbol {\tau }}={\frac {{\rm {d}}\mathbf {L} }{{\rm {d}}t}}=\mathbf {r} \times \mathbf {F} ={\frac {{\rm {d}}(\mathbf {I} \cdot {\boldsymbol {\omega }})}{{\rm {d}}t}}}
For rigid bodies, Newton's 2nd law for rotation takes the same form as for translation:
τ
=
d
L
d
t
=
d
(
I
⋅
ω
)
d
t
=
d
I
d
t
⋅
ω
+
I
⋅
α
{\displaystyle {\begin{aligned}{\boldsymbol {\tau }}&={\frac {{\rm {d}}\mathbf {L} }{{\rm {d}}t}}={\frac {{\rm {d}}(\mathbf {I} \cdot {\boldsymbol {\omega }})}{{\rm {d}}t}}\\&={\frac {{\rm {d}}\mathbf {I} }{{\rm {d}}t}}\cdot {\boldsymbol {\omega }}+\mathbf {I} \cdot {\boldsymbol {\alpha }}\\\end{aligned}}}
Likewise, for a number of particles, the equation of motion for one particle i is:[ 9]
d
L
i
d
t
=
τ
E
+
∑
i
≠
j
τ
i
j
{\displaystyle {\frac {\mathrm {d} \mathbf {L} _{i}}{\mathrm {d} t}}={\boldsymbol {\tau }}_{E}+\sum _{i\neq j}{\boldsymbol {\tau }}_{ij}}
Yank
Yank is rate of change of force:
Y
=
d
F
d
t
=
d
2
p
d
t
2
=
d
2
(
m
v
)
d
t
2
=
m
j
+
2
a
d
m
d
t
+
v
d
2
m
d
t
2
{\displaystyle {\begin{aligned}\mathbf {Y} &={\frac {d\mathbf {F} }{dt}}={\frac {d^{2}\mathbf {p} }{dt^{2}}}={\frac {d^{2}(m\mathbf {v} )}{dt^{2}}}\\[1ex]&=m\mathbf {j} +\mathbf {2a} {\frac {{\rm {d}}m}{{\rm {d}}t}}+\mathbf {v} {\frac {{\rm {d^{2}}}m}{{\rm {d}}t^{2}}}\end{aligned}}}
For constant mass, it becomes;
Y
=
m
j
{\displaystyle \mathbf {Y} =m\mathbf {j} }
Rotatum
Rotatum Ρ is also called moment of a Yank, because it is the rotational analogue to yank:
P
=
d
τ
d
t
=
r
×
Y
=
d
(
I
⋅
α
)
d
t
{\displaystyle {\boldsymbol {\mathrm {P} }}={\frac {{\rm {d}}{\boldsymbol {\tau }}}{{\rm {d}}t}}=\mathbf {r} \times \mathbf {Y} ={\frac {{\rm {d}}(\mathbf {I} \cdot {\boldsymbol {\alpha }})}{{\rm {d}}t}}}
Impulse
Impulse is the change in momentum:
Δ
p
=
∫
F
d
t
{\displaystyle \Delta \mathbf {p} =\int \mathbf {F} \,dt}
For constant force F :
Δ
p
=
F
Δ
t
{\displaystyle \Delta \mathbf {p} =\mathbf {F} \Delta t}
Twirl/angular impulse is the change in angular momentum:
Δ
L
=
∫
τ
d
t
{\displaystyle \Delta \mathbf {L} =\int {\boldsymbol {\tau }}\,dt}
For constant torque τ :
Δ
L
=
τ
Δ
t
{\displaystyle \Delta \mathbf {L} ={\boldsymbol {\tau }}\Delta t}
The precession angular speed of a spinning top is given by:
Ω
=
w
r
I
ω
{\displaystyle {\boldsymbol {\Omega }}={\frac {wr}{I{\boldsymbol {\omega }}}}}
where w is the weight of the spinning flywheel.
The mechanical work done by an external agent on a system is equal to the change in kinetic energy of the system:
The work done W by an external agent which exerts a force F (at r ) and torque τ on an object along a curved path C is:
W
=
Δ
T
=
∫
C
(
F
⋅
d
r
+
τ
⋅
n
d
θ
)
{\displaystyle W=\Delta T=\int _{C}\left(\mathbf {F} \cdot \mathrm {d} \mathbf {r} +{\boldsymbol {\tau }}\cdot \mathbf {n} \,{\mathrm {d} \theta }\right)}
where θ is the angle of rotation about an axis defined by a unit vector n .
The change in kinetic energy for an object initially traveling at speed
v
0
{\displaystyle v_{0}}
and later at speed
v
{\displaystyle v}
is:
Δ
E
k
=
W
=
1
2
m
(
v
2
−
v
0
2
)
{\displaystyle \Delta E_{k}=W={\frac {1}{2}}m(v^{2}-{v_{0}}^{2})}
Elastic potential energy [ edit ] For a stretched spring fixed at one end obeying Hooke's law , the elastic potential energy is
Δ
E
p
=
1
2
k
(
r
2
−
r
1
)
2
{\displaystyle \Delta E_{p}={\frac {1}{2}}k(r_{2}-r_{1})^{2}}
where r 2 and r 1 are collinear coordinates of the free end of the spring, in the direction of the extension/compression, and k is the spring constant.
Euler's equations for rigid body dynamics[ edit ]
Euler also worked out analogous laws of motion to those of Newton, see Euler's laws of motion . These extend the scope of Newton's laws to rigid bodies, but are essentially the same as above. A new equation Euler formulated is:[ 10]
I
⋅
α
+
ω
×
(
I
⋅
ω
)
=
τ
{\displaystyle \mathbf {I} \cdot {\boldsymbol {\alpha }}+{\boldsymbol {\omega }}\times \left(\mathbf {I} \cdot {\boldsymbol {\omega }}\right)={\boldsymbol {\tau }}}
where I is the moment of inertia tensor .
General planar motion [ edit ]
The previous equations for planar motion can be used here: corollaries of momentum, angular momentum etc. can immediately follow by applying the above definitions. For any object moving in any path in a plane,
r
=
r
(
t
)
=
r
r
^
{\displaystyle \mathbf {r} =\mathbf {r} (t)=r{\hat {\mathbf {r} }}}
the following general results apply to the particle.
Kinematics
Dynamics
Position
r
=
r
(
r
,
θ
,
t
)
=
r
r
^
{\displaystyle \mathbf {r} =\mathbf {r} \left(r,\theta ,t\right)=r{\hat {\mathbf {r} }}}
Velocity
v
=
r
^
d
r
d
t
+
r
ω
θ
^
{\displaystyle \mathbf {v} ={\hat {\mathbf {r} }}{\frac {\mathrm {d} r}{\mathrm {d} t}}+r\omega {\hat {\mathbf {\theta } }}}
Momentum
p
=
m
(
r
^
d
r
d
t
+
r
ω
θ
^
)
{\displaystyle \mathbf {p} =m\left({\hat {\mathbf {r} }}{\frac {\mathrm {d} r}{\mathrm {d} t}}+r\omega {\hat {\mathbf {\theta } }}\right)}
Angular momenta
L
=
m
r
×
(
r
^
d
r
d
t
+
r
ω
θ
^
)
{\displaystyle \mathbf {L} =m\mathbf {r} \times \left({\hat {\mathbf {r} }}{\frac {\mathrm {d} r}{\mathrm {d} t}}+r\omega {\hat {\mathbf {\theta } }}\right)}
Acceleration
a
=
(
d
2
r
d
t
2
−
r
ω
2
)
r
^
+
(
r
α
+
2
ω
d
r
d
t
)
θ
^
{\displaystyle \mathbf {a} =\left({\frac {\mathrm {d} ^{2}r}{\mathrm {d} t^{2}}}-r\omega ^{2}\right){\hat {\mathbf {r} }}+\left(r\alpha +2\omega {\frac {\mathrm {d} r}{{\rm {d}}t}}\right){\hat {\mathbf {\theta } }}}
The centripetal force is
F
⊥
=
−
m
ω
2
R
r
^
=
−
ω
2
m
{\displaystyle \mathbf {F} _{\bot }=-m\omega ^{2}R{\hat {\mathbf {r} }}=-\omega ^{2}\mathbf {m} }
where again m is the mass moment, and the Coriolis force is
F
c
=
2
ω
m
d
r
d
t
θ
^
=
2
ω
m
v
θ
^
{\displaystyle \mathbf {F} _{c}=2\omega m{\frac {{\rm {d}}r}{{\rm {d}}t}}{\hat {\mathbf {\theta } }}=2\omega mv{\hat {\mathbf {\theta } }}}
The Coriolis acceleration and force can also be written:
F
c
=
m
a
c
=
−
2
m
ω
×
v
{\displaystyle \mathbf {F} _{c}=m\mathbf {a} _{c}=-2m{\boldsymbol {\omega \times v}}}
Central force motion [ edit ] For a massive body moving in a central potential due to another object, which depends only on the radial separation between the centers of masses of the two objects, the equation of motion is:
d
2
d
θ
2
(
1
r
)
+
1
r
=
−
μ
r
2
l
2
F
(
r
)
{\displaystyle {\frac {d^{2}}{d\theta ^{2}}}\left({\frac {1}{\mathbf {r} }}\right)+{\frac {1}{\mathbf {r} }}=-{\frac {\mu \mathbf {r} ^{2}}{\mathbf {l} ^{2}}}\mathbf {F} (\mathbf {r} )}
Equations of motion (constant acceleration)[ edit ]
For classical (Galileo-Newtonian) mechanics, the transformation law from one inertial or accelerating (including rotation) frame (reference frame traveling at constant velocity - including zero) to another is the Galilean transform.
Unprimed quantities refer to position, velocity and acceleration in one frame F; primed quantities refer to position, velocity and acceleration in another frame F' moving at translational velocity V or angular velocity Ω relative to F. Conversely F moves at velocity (—V or —Ω ) relative to F'. The situation is similar for relative accelerations.
Motion of entities
Inertial frames
Accelerating frames
Translation
V = Constant relative velocity between two inertial frames F and F'.
A = (Variable) relative acceleration between two accelerating frames F and F'.
Relative position
r
′
=
r
+
V
t
{\displaystyle \mathbf {r} '=\mathbf {r} +\mathbf {V} t}
Relative velocity
v
′
=
v
+
V
{\displaystyle \mathbf {v} '=\mathbf {v} +\mathbf {V} }
Equivalent accelerations
a
′
=
a
{\displaystyle \mathbf {a} '=\mathbf {a} }
Relative accelerations
a
′
=
a
+
A
{\displaystyle \mathbf {a} '=\mathbf {a} +\mathbf {A} }
Apparent/fictitious forces
F
′
=
F
−
F
a
p
p
{\displaystyle \mathbf {F} '=\mathbf {F} -\mathbf {F} _{\mathrm {app} }}
Rotation
Ω = Constant relative angular velocity between two frames F and F'.
Λ = (Variable) relative angular acceleration between two accelerating frames F and F'.
Relative angular position
θ
′
=
θ
+
Ω
t
{\displaystyle \theta '=\theta +\Omega t}
Relative velocity
ω
′
=
ω
+
Ω
{\displaystyle {\boldsymbol {\omega }}'={\boldsymbol {\omega }}+{\boldsymbol {\Omega }}}
Equivalent accelerations
α
′
=
α
{\displaystyle {\boldsymbol {\alpha }}'={\boldsymbol {\alpha }}}
Relative accelerations
α
′
=
α
+
Λ
{\displaystyle {\boldsymbol {\alpha }}'={\boldsymbol {\alpha }}+{\boldsymbol {\Lambda }}}
Apparent/fictitious torques
τ
′
=
τ
−
τ
a
p
p
{\displaystyle {\boldsymbol {\tau }}'={\boldsymbol {\tau }}-{\boldsymbol {\tau }}_{\mathrm {app} }}
Transformation of any vector T to a rotating frame
d
T
′
d
t
=
d
T
d
t
−
Ω
×
T
{\displaystyle {\frac {{\rm {d}}\mathbf {T} '}{{\rm {d}}t}}={\frac {{\rm {d}}\mathbf {T} }{{\rm {d}}t}}-{\boldsymbol {\Omega }}\times \mathbf {T} }
Mechanical oscillators [ edit ]
SHM, DHM, SHO, and DHO refer to simple harmonic motion, damped harmonic motion, simple harmonic oscillator and damped harmonic oscillator respectively.
Equations of motion
Physical situation
Nomenclature
Translational equations
Angular equations
SHM
x = Transverse displacement
θ = Angular displacement
A = Transverse amplitude
Θ = Angular amplitude
d
2
x
d
t
2
=
−
ω
2
x
{\displaystyle {\frac {\mathrm {d} ^{2}x}{\mathrm {d} t^{2}}}=-\omega ^{2}x}
Solution:
x
=
A
sin
(
ω
t
+
ϕ
)
{\displaystyle x=A\sin \left(\omega t+\phi \right)}
d
2
θ
d
t
2
=
−
ω
2
θ
{\displaystyle {\frac {\mathrm {d} ^{2}\theta }{\mathrm {d} t^{2}}}=-\omega ^{2}\theta }
Solution:
θ
=
Θ
sin
(
ω
t
+
ϕ
)
{\displaystyle \theta =\Theta \sin \left(\omega t+\phi \right)}
Unforced DHM
b = damping constant
κ = torsion constant
d
2
x
d
t
2
+
b
d
x
d
t
+
ω
2
x
=
0
{\displaystyle {\frac {\mathrm {d} ^{2}x}{\mathrm {d} t^{2}}}+b{\frac {\mathrm {d} x}{\mathrm {d} t}}+\omega ^{2}x=0}
Solution (see below for ω' ):
x
=
A
e
−
b
t
/
2
m
cos
(
ω
′
)
{\displaystyle x=Ae^{-bt/2m}\cos \left(\omega '\right)}
Resonant frequency:
ω
r
e
s
=
ω
2
−
(
b
4
m
)
2
{\displaystyle \omega _{\mathrm {res} }={\sqrt {\omega ^{2}-\left({\frac {b}{4m}}\right)^{2}}}}
Damping rate:
γ
=
b
/
m
{\displaystyle \gamma =b/m}
Expected lifetime of excitation:
τ
=
1
/
γ
{\displaystyle \tau =1/\gamma }
d
2
θ
d
t
2
+
b
d
θ
d
t
+
ω
2
θ
=
0
{\displaystyle {\frac {\mathrm {d} ^{2}\theta }{\mathrm {d} t^{2}}}+b{\frac {\mathrm {d} \theta }{\mathrm {d} t}}+\omega ^{2}\theta =0}
Solution:
θ
=
Θ
e
−
κ
t
/
2
m
cos
(
ω
)
{\displaystyle \theta =\Theta e^{-\kappa t/2m}\cos \left(\omega \right)}
Resonant frequency:
ω
r
e
s
=
ω
2
−
(
κ
4
m
)
2
{\displaystyle \omega _{\mathrm {res} }={\sqrt {\omega ^{2}-\left({\frac {\kappa }{4m}}\right)^{2}}}}
Damping rate:
γ
=
κ
/
m
{\displaystyle \gamma =\kappa /m}
Expected lifetime of excitation:
τ
=
1
/
γ
{\displaystyle \tau =1/\gamma }
Arnold, Vladimir I. (1989), Mathematical Methods of Classical Mechanics (2nd ed.), Springer, ISBN 978-0-387-96890-2
Berkshire, Frank H. ; Kibble, T. W. B. (2004), Classical Mechanics (5th ed.), Imperial College Press, ISBN 978-1-86094-435-2
Mayer, Meinhard E.; Sussman, Gerard J.; Wisdom, Jack (2001), Structure and Interpretation of Classical Mechanics , MIT Press, ISBN 978-0-262-19455-6
Linear/translational quantities
Angular/rotational quantities
Dimensions
1
L
L2
Dimensions
1
θ
θ 2
T
time : t s
absement : A m s
T
time : t s
1
distance : d , position : r , s , x , displacement m
area : A m2
1
angle : θ , angular displacement : θ rad
solid angle : Ω rad2 , sr
T−1
frequency : f s−1 , Hz
speed : v , velocity : v m s−1
kinematic viscosity : ν ,specific angular momentum : h m2 s−1
T−1
frequency : f , rotational speed : n , rotational velocity : n s−1 , Hz
angular speed : ω , angular velocity : ω rad s−1
T−2
acceleration : a m s−2
T−2
rotational acceleration s−2
angular acceleration : α rad s−2
T−3
jerk : j m s−3
T−3
angular jerk : ζ rad s−3
M
mass : m kg
weighted position : M ⟨x ⟩ = ∑ m x
moment of inertia : I kg m2
ML
MT−1
Mass flow rate :
m
˙
{\displaystyle {\dot {m}}}
kg s−1
momentum : p , impulse : J kg m s−1 , N s
action : 𝒮 , actergy : ℵ kg m2 s−1 , J s
MLT−1
angular momentum : L , angular impulse : ΔL kg m rad s−1
MT−2
force : F , weight : F g kg m s−2 , N
energy : E , work : W , Lagrangian : L kg m2 s−2 , J
MLT−2
torque : τ , moment : M kg m rad s−2 , N m
MT−3
yank : Y kg m s−3 , N s−1
power : P kg m2 s−3 , W
MLT−3
rotatum : P kg m rad s−3 , N m s−1