Hubbry Logo
search
search button
Sign in
Historyarrow-down
starMorearrow-down
Welcome to the community hub built on top of the List of numeral systems Wikipedia article. Here, you can discuss, collect, and organize anything related to List of numeral systems. The purpose of the hub is to connect people, foster deeper knowledge, and help improve the root Wikipedia article.
Add your contribution
Inside this hub
List of numeral systems

There are many different numeral systems, that is, writing systems for expressing numbers.

By culture / time period

[edit]

"A base is a natural number B whose powers (B multiplied by itself some number of times) are specially designated within a numerical system."[1]: 38  The term is not equivalent to radix, as it applies to all numerical notation systems (not just positional ones with a radix) and most systems of spoken numbers.[1] Some systems have two bases, a smaller (subbase) and a larger (base); an example is Roman numerals, which are organized by fives (V=5, L=50, D=500, the subbase) and tens (X=10, C=100, M=1,000, the base).

Name Base Sample Approx. First Appearance
Proto-cuneiform numerals 10&60 c. 3500–2000 BCE
Indus numerals unknown[2] c. 3500–1900 BCE[2]
Proto-Elamite numerals 10&60 3100 BCE
Sumerian numerals 10&60 3100 BCE
Egyptian numerals 10
Z1V20V1M12D50I8I7C11
3000 BCE
Babylonian numerals 10&60 2000 BCE
Aegean numerals 10 𐄇 𐄈 𐄉 𐄊 𐄋 𐄌 𐄍 𐄎 𐄏  ( 1 2 3 4 5 6 7 8 9 )
𐄐 𐄑 𐄒 𐄓 𐄔 𐄕 𐄖 𐄗 𐄘  ( 10 20 30 40 50 60 70 80 90 )
𐄙 𐄚 𐄛 𐄜 𐄝 𐄞 𐄟 𐄠 𐄡  ( 100 200 300 400 500 600 700 800 900 )
𐄢 𐄣 𐄤 𐄥 𐄦 𐄧 𐄨 𐄩 𐄪  ( 1000 2000 3000 4000 5000 6000 7000 8000 9000 )
𐄫 𐄬 𐄭 𐄮 𐄯 𐄰 𐄱 𐄲 𐄳  ( 10000 20000 30000 40000 50000 60000 70000 80000 90000 )
1500 BCE
Chinese numerals
Japanese numerals
Korean numerals (Sino-Korean)
Vietnamese numerals (Sino-Vietnamese)
10

零一二三四五六七八九十百千萬億 (Default, Traditional Chinese)
〇一二三四五六七八九十百千万亿 (Default, Simplified Chinese)

1300 BCE
Roman numerals 5&10 I V X L C D M 1000 BCE[1]
Hebrew numerals 10 א ב ג ד ה ו ז ח ט
י כ ל מ נ ס ע פ צ
ק ר ש ת ך ם ן ף ץ
800 BCE
Indian numerals 10

Bengali ০ ১ ২ ৩ ৪ ৫ ৬ ৭ ৮ ৯

Devanagari ० १ २ ३ ४ ५ ६ ७ ८ ९

Gujarati ૦ ૧ ૨ ૩ ૪ ૫ ૬ ૭ ૮ ૯

Kannada ೦ ೧ ೨ ೩ ೪ ೫ ೬ ೭ ೮ ೯

Malayalam ൦ ൧ ൨ ൩ ൪ ൫ ൬ ൭ ൮ ൯

Odia ୦ ୧ ୨ ୩ ୪ ୫ ୬ ୭ ୮ ୯

Punjabi ੦ ੧ ੨ ੩ ੪ ੫ ੬ ੭ ੮ ੯

Tamil ௦ ௧ ௨ ௩ ௪ ௫ ௬ ௭ ௮ ௯

Telugu ౦ ౧ ౨ ౩ ౪ ౫ ౬ ౭ ౮ ౯

Tibetan ༠ ༡ ༢ ༣ ༤ ༥ ༦ ༧ ༨ ༩

Urdu ۰ ۱ ۲ ۳ ۴ ۵ ۶ ۷ ۸ ۹

750–500 BCE
Greek numerals 10 ō α β γ δ ε ϝ ζ η θ ι
ο Αʹ Βʹ Γʹ Δʹ Εʹ Ϛʹ Ζʹ Ηʹ Θʹ
<400 BCE
Kharosthi numerals 4&10 𐩇 𐩆 𐩅 𐩄 𐩃 𐩂 𐩁 𐩀 <400–250 BCE[3]
Phoenician numerals 10 𐤙 𐤘 𐤗 𐤛𐤛𐤛 𐤛𐤛𐤚 𐤛𐤛𐤖 𐤛𐤛 𐤛𐤚 𐤛𐤖 𐤛 𐤚 𐤖 [4] <250 BCE[5]
Chinese rod numerals 10 𝍠 𝍡 𝍢 𝍣 𝍤 𝍥 𝍦 𝍧 𝍨 𝍩 1st Century
Coptic numerals 10 Ⲁ Ⲃ Ⲅ Ⲇ Ⲉ Ⲋ Ⲍ Ⲏ Ⲑ 2nd Century
Ge'ez numerals 10 ፩ ፪ ፫ ፬ ፭ ፮ ፯ ፰ ፱
፲ ፳ ፴ ፵ ፶ ፷ ፸ ፹ ፺

[6]
3rd–4th Century
15th Century (Modern Style)[7]: 135–136 
Armenian numerals 10 Ա Բ Գ Դ Ե Զ Է Ը Թ Ժ Early 5th Century
Khmer numerals 10 ០ ១ ២ ៣ ៤ ៥ ៦ ៧ ៨ ៩ Early 7th Century
Thai numerals 10 ๐ ๑ ๒ ๓ ๔ ๕ ๖ ๗ ๘ ๙ 7th Century[8]
Abjad numerals 10 غ ظ ض ذ خ ث ت ش ر ق ص ف ع س ن م ل ك ي ط ح ز و هـ د ج ب ا <8th Century
Chinese numerals (financial) 10 零壹貳參肆伍陸柒捌玖拾佰仟萬億 (T. Chinese)
零壹贰叁肆伍陆柒捌玖拾佰仟萬億 (S. Chinese)
late 7th/early 8th Century[9]
Eastern Arabic numerals 10 ٩ ٨ ٧ ٦ ٥ ٤ ٣ ٢ ١ ٠ 8th Century
Vietnamese numerals (Chữ Nôm) 10 𠬠 𠄩 𠀧 𦊚 𠄼 𦒹 𦉱 𠔭 𠃩 <9th Century
Western Arabic numerals 10 0 1 2 3 4 5 6 7 8 9 9th Century
Glagolitic numerals 10 Ⰰ Ⰱ Ⰲ Ⰳ Ⰴ Ⰵ Ⰶ Ⰷ Ⰸ ... 9th Century
Cyrillic numerals 10 а в г д е ѕ з и ѳ і ... 10th Century
Rumi numerals 10
10th Century
Burmese numerals 10 ၀ ၁ ၂ ၃ ၄ ၅ ၆ ၇ ၈ ၉ 11th Century[10]
Tangut numerals 10 𘈩 𗍫 𘕕 𗥃 𗏁 𗤁 𗒹 𘉋 𗢭 𗰗 11th Century (1036)
Cistercian numerals 10 13th Century
Maya numerals 5&20 <15th Century
Muisca numerals 20 <15th Century
Korean numerals (Hangul) 10 영 일 이 삼 사 오 육 칠 팔 구 15th Century (1443)
Aztec numerals 20 16th Century
Sinhala numerals 10 ෦ ෧ ෨ ෩ ෪ ෫ ෬ ෭ ෮ ෯ 𑇡 𑇢 𑇣
𑇤 𑇥 𑇦 𑇧 𑇨 𑇩 𑇪 𑇫 𑇬 𑇭 𑇮 𑇯 𑇰 𑇱 𑇲 𑇳 𑇴
<18th Century
Pentadic runes 10 19th Century
Cherokee numerals 10 19th Century (1820s)
Vai numerals 10 ꘠ ꘡ ꘢ ꘣ ꘤ ꘥ ꘦ ꘧ ꘨ ꘩ [11] 19th Century (1832)[12]
Bamum numerals 10 ꛯ ꛦ ꛧ ꛨ ꛩ ꛪ ꛫ ꛬ ꛭ ꛮ [13] 19th Century (1896)[12]
Mende Kikakui numerals 10 𞣏 𞣎 𞣍 𞣌 𞣋 𞣊 𞣉 𞣈 𞣇 [14] 20th Century (1917)[15]
Osmanya numerals 10 𐒠 𐒡 𐒢 𐒣 𐒤 𐒥 𐒦 𐒧 𐒨 𐒩 20th Century (1920s)
Medefaidrin numerals 20 𖺀 𖺁/𖺔 𖺂/𖺕 𖺃/𖺖 𖺄 𖺅 𖺆 𖺇 𖺈 𖺉 𖺊 𖺋 𖺌 𖺍 𖺎 𖺏 𖺐 𖺑 𖺒 𖺓 [16] 20th Century (1930s)[17]
N'Ko numerals 10 ߉ ߈ ߇ ߆ ߅ ߄ ߃ ߂ ߁ ߀ [18] 20th Century (1949)[19]
Hmong numerals 10 𖭐 𖭑 𖭒 𖭓 𖭔 𖭕 𖭖 𖭗 𖭘 𖭑𖭐 20th Century (1959)
Garay numerals 10 Garay numbers[20] 20th Century (1961)[21]
Adlam numerals 10 𞥙 𞥘 𞥗 𞥖 𞥕 𞥔 𞥓 𞥒 𞥑 𞥐 [22] 20th Century (1989)[23]
Kaktovik numerals 5&20 𝋀 𝋁 𝋂 𝋃 𝋄 𝋅 𝋆 𝋇 𝋈 𝋉 𝋊 𝋋 𝋌 𝋍 𝋎 𝋏 𝋐 𝋑 𝋒 𝋓
𝋀 𝋁 𝋂 𝋃 𝋄 𝋅 𝋆 𝋇 𝋈 𝋉 𝋊 𝋋 𝋌 𝋍 𝋎 𝋏 𝋐 𝋑 𝋒 𝋓 [24]
20th Century (1994)[25]
Sundanese numerals 10 ᮰ ᮱ ᮲ ᮳ ᮴ ᮵ ᮶ ᮷ ᮸ ᮹ 20th Century (1996)[26]

By type of notation

[edit]

Numeral systems are classified here as to whether they use positional notation (also known as place-value notation), and further categorized by radix or base.

Standard positional numeral systems

[edit]
A binary clock might use LEDs to express binary values. In this clock, each column of LEDs shows a binary-coded decimal numeral of the traditional sexagesimal time.

The common names are derived somewhat arbitrarily from a mix of Latin and Greek, in some cases including roots from both languages within a single name.[27] There have been some proposals for standardisation.[28]

Base Name Usage
2 Binary Digital computing, imperial and customary volume (bushel-kenning-peck-gallon-pottle-quart-pint-cup-gill-jack-fluid ounce-tablespoon)
3 Ternary, trinary[29] Cantor set (all points in [0,1] that can be represented in ternary with no 1s); counting Tasbih in Islam; hand-foot-yard and teaspoon-tablespoon-shot measurement systems; most economical integer base
4 Quaternary Chumashan languages and Kharosthi numerals
5 Quinary Gumatj, Ateso, Nunggubuyu, Kuurn Kopan Noot, and Saraveca languages; common count grouping e.g. tally marks
6 Senary, seximal Diceware, Ndom, Kanum, and Proto-Uralic language (suspected)
7 Septimal, Septenary[30] Western music letter notation
8 Octal Charles XII of Sweden, Unix-like permissions, Squawk codes, DEC PDP-11, Yuki, Pame, compact notation for binary numbers, Xiantian (I Ching, China)
9 Nonary, nonal Compact notation for ternary
10 Decimal, denary Most widely used by contemporary societies[31][32][33]
11 Undecimal, unodecimal, undenary A base-11 number system was mistakenly attributed to the Māori (New Zealand) in the 19th century[34] and one was reported to be used by the Pangwa (Tanzania) in the 20th century,[35] but was not confirmed by later research and is believed to also be an error.[36] Briefly proposed during the French Revolution to settle a dispute between those proposing a shift to duodecimal and those who were content with decimal. Used as a check digit in ISBN for 10-digit ISBNs. Applications in computer science and technology.[37][38][39] Featured in popular fiction.[citation needed]
12 Duodecimal, dozenal Languages in the Nigerian Middle Belt Janji, Gbiri-Niragu, Piti, and the Nimbia dialect of Gwandara; Chepang language of Nepal, and the Mahl dialect of Maldivian; dozen-gross-great gross counting; 12-hour clock and months timekeeping; years of Chinese zodiac; foot and inch; Roman fractions.
13 Tredecimal, tridecimal[40][41] Conway's base 13 function.
14 Quattuordecimal, quadrodecimal[40][41] Programming for the HP 9100A/B calculator[42] and image processing applications.[43]
15 Quindecimal, pentadecimal[44][41] Telephony routing over IP, and the Huli language.[36]
16 Hexadecimal, sexadecimal, sedecimal Compact notation for binary data; tonal system of Nystrom.
17 Septendecimal, heptadecimal[44][41]
19 Undevicesimal, nonadecimal[44][41]
20 Vigesimal Basque, Celtic, Muisca, Inuit, Yoruba, Tlingit, and Dzongkha numerals; Santali, and Ainu languages.
5&20 Quinary-vigesimal[45][46][47] Greenlandic, Iñupiaq, Kaktovik, Maya, Nunivak Cupʼig, and Yupʼik numerals – "wide-spread... in the whole territory from Alaska along the Pacific Coast to the Orinoco and the Amazon"[45]
21 The smallest base in which all fractions 1/2 to 1/18 have periods of 4 or shorter.
23 Kalam language,[48] Kobon language[citation needed]
24 Quadravigesimal[49] 24-hour clock timekeeping; Greek alphabet; Kaugel language.
25 Sometimes used as compact notation for quinary.
26 Hexavigesimal[49][50] Sometimes used for encryption or ciphering,[51] using all letters in the English alphabet
27 Septemvigesimal[citation needed] Telefol,[48] Oksapmin,[52] Wambon,[53] and Hewa[54] languages. Mapping the nonzero digits to the alphabet and zero to the space is occasionally used to provide checksums for alphabetic data such as personal names,[55] to provide a concise encoding of alphabetic strings,[56] or as the basis for a form of gematria.[57] Compact notation for ternary.
28 Months timekeeping.
30 Trigesimal[citation needed] The Natural Area Code, this is the smallest base such that all of 1/2 to 1/6 terminate, a number n is a regular number if and only if 1/n terminates in base 30.
32 Duotrigesimal Found in the Ngiti language.
33 Use of letters (except I, O, Q) with digits in vehicle registration plates of Hong Kong.
34 The smallest base where 1/2 terminates and all of 1/2 to 1/18 have periods of 4 or shorter.
36 Hexatrigesimal[58][59] Covers the ten decimal digits and all letters of the English alphabet.
37 Covers the ten decimal digits and all letters of the Spanish alphabet.
40 Quadragesimal[citation needed] DEC RADIX 50/MOD40 encoding used to compactly represent file names and other symbols on Digital Equipment Corporation computers. The character set is a subset of ASCII consisting of space, upper case letters, the punctuation marks "$", ".", and "%", and the numerals.
42 Largest base for which all minimal primes are known.
47 Smallest base for which no generalized Wieferich primes are known.
49 Compact notation for septenary.[citation needed]
50 Quinquagesimal[citation needed] SQUOZE encoding used to compactly represent file names and other symbols on some IBM computers. Encoding using all Gurmukhi characters plus the Gurmukhi digits.
60 Sexagesimal Babylonian numerals and Sumerian; degrees-minutes-seconds and hours-minutes-seconds measurement systems; Ekari; covers base 62 apart from I, O, and l, but including _(underscore).[60]
62 Can be notated with the digits 0–9 and the cased letters A–Z and a–z of the English alphabet.
64 Tetrasexagesimal[citation needed] I Ching in China.
This system is conveniently coded into ASCII by using the 26 letters of the Latin alphabet in both upper and lower case (52 total) plus 10 numerals (62 total) and then adding two special characters (+ and /).
72 The smallest base greater than binary such that no three-digit narcissistic number exists.
80 Octogesimal[citation needed] Used as a sub-base in Supyire.
85 Ascii85 encoding. This is the minimum number of characters needed to encode a 32 bit number into 5 printable characters in a process similar to MIME-64 encoding, since 855 is only slightly bigger than 232. Such method is 6.7% more efficient than MIME-64 which encodes a 24 bit number into 4 printable characters.
89 Largest base for which all left-truncatable primes are known.
90 Nonagesimal[citation needed] Related to Goormaghtigh conjecture for the generalized repunit numbers (111 in base 90 = 1111111111111 in base 2).
95 Number of printable ASCII characters.[61]
96 Total number of character codes in the (six) ASCII sticks containing printable characters.
97 Smallest base which is not perfect odd power (where generalized Wagstaff numbers can be factored algebraically) for which no generalized Wagstaff primes are known.
185 Smallest base which is not a perfect power (where generalized repunits can be factored algebraically) for which no generalized repunit primes are known.
210 Smallest base such that all fractions 1/2 to 1/10 terminate.
Base Name Usage
1 Unary (Bijective base‑1) Tally marks, Counting. Unary numbering is used as part of some data compression algorithms such as Golomb coding. It also forms the basis for the Peano axioms for formalizing arithmetic within mathematical logic. A form of unary notation called Church encoding is used to represent numbers within lambda calculus.

Some email spam filters tag messages with a number of asterisks in an e-mail header such as X-Spam-Bar or X-SPAM-LEVEL. The larger the number, the more likely the email is considered spam.

10 Bijective base-10 To avoid zero
26 Bijective base-26 Spreadsheet column numeration. Also used by John Nash as part of his obsession with numerology and the uncovering of "hidden" messages.[62]
Base Name Usage
2 Balanced binary (Non-adjacent form)
3 Balanced ternary Ternary computers
4 Balanced quaternary
5 Balanced quinary
6 Balanced senary
7 Balanced septenary
8 Balanced octal
9 Balanced nonary
10 Balanced decimal John Colson
Augustin Cauchy
11 Balanced undecimal
12 Balanced duodecimal
Base Name Usage
2i Quater-imaginary base related to base −4 and base 16
Base related to base −2 and base 4
Base related to base 2
Base related to base 8
Base related to base 2
−1 ± i Twindragon base Twindragon fractal shape, related to base −4 and base 16
1 ± i Negatwindragon base related to base −4 and base 16
Base Name Usage
Base a rational non-integer base
Base related to duodecimal
Base related to decimal
Base related to base 2
Base related to base 3
Base
Base
Base usage in 12-tone equal temperament musical system
Base
Base a negative rational non-integer base
Base a negative non-integer base, related to base 2
Base related to decimal
Base related to duodecimal
φ Golden ratio base early Beta encoder[63]
ρ Plastic number base
ψ Supergolden ratio base
Silver ratio base
e Base best radix economy [citation needed]
π Base
eπ Base
Base
Base Name Usage
2 Dyadic number
3 Triadic number
4 Tetradic number the same as dyadic number
5 Pentadic number
6 Hexadic number not a field
7 Heptadic number
8 Octadic number the same as dyadic number
9 Enneadic number the same as triadic number
10 Decadic number not a field
11 Hendecadic number
12 Dodecadic number not a field
  • Factorial number system {1, 2, 3, 4, 5, 6, ...}
  • Even double factorial number system {2, 4, 6, 8, 10, 12, ...}
  • Odd double factorial number system {1, 3, 5, 7, 9, 11, ...}
  • Primorial number system {2, 3, 5, 7, 11, 13, ...}
  • Fibonorial number system {1, 2, 3, 5, 8, 13, ...}
  • {60, 60, 24, 7} in timekeeping
  • {60, 60, 24, 30 (or 31 or 28 or 29), 12, 10, 10, 10} in timekeeping
  • (12, 20) traditional English monetary system (£sd)
  • (20, 18, 13) Maya timekeeping

Other

[edit]

Non-positional notation

[edit]

All known numeral systems developed before the Babylonian numerals are non-positional,[64] as are many developed later, such as the Roman numerals. The French Cistercian monks created their own numeral system.

See also

[edit]

References

[edit]
Add your contribution
Related Hubs