Hubbry Logo
search button
Sign in
Elliptic pseudoprime
Elliptic pseudoprime
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Elliptic pseudoprime
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Elliptic pseudoprime Wikipedia article. Here, you can discuss, collect, and organize anything related to Elliptic pseudoprime. The purpose of the hub is to...
Add your contribution
Elliptic pseudoprime

In number theory, a pseudoprime is called an elliptic pseudoprime for (EP), where E is an elliptic curve defined over the field of rational numbers with complex multiplication by an order in , having equation y2 = x3 + ax + b with a, b integers, P being a point on E and n a natural number such that the Jacobi symbol (−d | n) = −1, if (n + 1)P ≡ 0 (mod n).

The number of elliptic pseudoprimes less than X is bounded above, for large X, by

References

[edit]
  • Gordon, Daniel M.; Pomerance, Carl (1991). "The distribution of Lucas and elliptic pseudoprimes". Mathematics of Computation. 57 (196): 825–838. doi:10.2307/2938720. JSTOR 2938720. Zbl 0774.11074.
[edit]