Hubbry Logo
search button
Sign in
Centered decagonal number
Centered decagonal number
Comunity Hub
arrow-down
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Centered decagonal number
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Centered decagonal number Wikipedia article. Here, you can discuss, collect, and organize anything related to Centered decagonal number. The purpose of the...
Add your contribution
Centered decagonal number

A centered decagonal number is a centered figurate number that represents a decagon with a dot in the center and all other dots surrounding the center dot in successive decagonal layers. The centered decagonal number for n is given by the formula

Thus, the first few centered decagonal numbers are

1, 11, 31, 61, 101, 151, 211, 281, 361, 451, 551, 661, 781, 911, 1051, ... (sequence A062786 in the OEIS)

Like any other centered k-gonal number, the nth centered decagonal number can be reckoned by multiplying the (n − 1)th triangular number by k, 10 in this case, then adding 1. As a consequence of performing the calculation in base 10, the centered decagonal numbers can be obtained by simply adding a 1 to the right of each triangular number. Therefore, all centered decagonal numbers are odd and in base 10 always end in 1.

Another consequence of this relation to triangular numbers is the simple recurrence relation for centered decagonal numbers:

where

Relation to other sequences

[edit]

Generating Function

[edit]

The generating function of the centered decagonal number is

Continued fraction forms

[edit]

has the simple continued fraction [5n-3;{2,2n-2,2,10n-6}].

See also

[edit]

References

[edit]

Deza, Elena; Deza, Michel Marie (November 20, 2011). "1.6". Figurate Numbers. WORLD SCIENTIFIC. doi:10.1142/8188. ISBN 978-981-4355-48-3.