Hubbry Logo
search button
Sign in
Heptagonal number
Heptagonal number
Comunity Hub
arrow-down
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Heptagonal number
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Heptagonal number Wikipedia article. Here, you can discuss, collect, and organize anything related to Heptagonal number. The purpose of the hub is to conne...
Add your contribution
Heptagonal number

In mathematics, a heptagonal number is a figurate number that is constructed by combining heptagons with ascending size. The n-th heptagonal number is given by the formula

.
The first five heptagonal numbers.

The first few heptagonal numbers are:

0, 1, 7, 18, 34, 55, 81, 112, 148, 189, 235, 286, 342, 403, 469, 540, 616, 697, 783, 874, 970, 1071, 1177, 1288, 1404, 1525, 1651, 1782, … (sequence A000566 in the OEIS)

Parity

[edit]

The parity of heptagonal numbers follows the pattern odd-odd-even-even. Like square numbers, the digital root in base 10 of a heptagonal number can only be 1, 4, 7 or 9. Five times a heptagonal number, plus 1 equals a triangular number.

Additional properties

[edit]
  • The heptagonal numbers have several notable formulas:

Sum of reciprocals

[edit]

A formula for the sum of the reciprocals of the heptagonal numbers is given by:[1]

with golden ratio .

Heptagonal roots

[edit]

In analogy to the square root of x, one can calculate the heptagonal root of x, meaning the number of terms in the sequence up to and including x.

The heptagonal root of x is given by the formula

which is obtained by using the quadratic formula to solve for its unique positive root n.

References

[edit]
  1. ^ "Beyond the Basel Problem: Sums of Reciprocals of Figurate Numbers" (PDF). Archived from the original (PDF) on 2013-05-29. Retrieved 2010-05-19.