Hubbry Logo
search button
Sign in
Quasi-derivative
Quasi-derivative
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Quasi-derivative
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Quasi-derivative Wikipedia article. Here, you can discuss, collect, and organize anything related to Quasi-derivative. The purpose of the hub is to connect...
Add your contribution
Quasi-derivative

In mathematics, the quasi-derivative is one of several generalizations of the derivative of a function between two Banach spaces. The quasi-derivative is a slightly stronger version of the Gateaux derivative, though weaker than the Fréchet derivative.

Let f : AF be a continuous function from an open set A in a Banach space E to another Banach space F. Then the quasi-derivative of f at x0A is a linear transformation u : EF with the following property: for every continuous function g : [0,1] → A with g(0)=x0 such that g′(0) ∈ E exists,

If such a linear map u exists, then f is said to be quasi-differentiable at x0.

Continuity of u need not be assumed, but it follows instead from the definition of the quasi-derivative. If f is Fréchet differentiable at x0, then by the chain rule, f is also quasi-differentiable and its quasi-derivative is equal to its Fréchet derivative at x0. The converse is true provided E is finite-dimensional. Finally, if f is quasi-differentiable, then it is Gateaux differentiable and its Gateaux derivative is equal to its quasi-derivative.

References

[edit]
  • Dieudonné, J (1969). Foundations of modern analysis. Academic Press.