Hubbry Logo
search button
Sign in
Sazonov's theorem
Sazonov's theorem
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Sazonov's theorem
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Sazonov's theorem Wikipedia article. Here, you can discuss, collect, and organize anything related to Sazonov's theorem. The purpose of the hub is to conne...
Add your contribution
Sazonov's theorem

In mathematics, Sazonov's theorem, named after Vyacheslav Vasilievich Sazonov (Вячесла́в Васи́льевич Сазо́нов), is a theorem in functional analysis.

It states that a bounded linear operator between two Hilbert spaces is γ-radonifying if it is a Hilbert–Schmidt operator. The result is also important in the study of stochastic processes and the Malliavin calculus, since results concerning probability measures on infinite-dimensional spaces are of central importance in these fields. Sazonov's theorem also has a converse: if the map is not Hilbert–Schmidt, then it is not γ-radonifying.

Statement of the theorem

[edit]

Let G and H be two Hilbert spaces and let T : GH be a bounded operator from G to H. Recall that T is said to be γ-radonifying if the push forward of the canonical Gaussian cylinder set measure on G is a bona fide measure on H. Recall also that T is said to be a Hilbert–Schmidt operator if there is an orthonormal basis { ei : iI } of G such that

Then Sazonov's theorem is that T is γ-radonifying if it is a Hilbert–Schmidt operator.

The proof uses Prokhorov's theorem.

Remarks

[edit]

The canonical Gaussian cylinder set measure on an infinite-dimensional Hilbert space can never be a bona fide measure; equivalently, the identity function on such a space cannot be γ-radonifying.

See also

[edit]

References

[edit]
  • Schwartz, Laurent (1973), Radon measures on arbitrary topological spaces and cylindrical measures., Tata Institute of Fundamental Research Studies in Mathematics, London: Oxford University Press, pp. xii+393, MR 0426084