Hubbry Logo
search button
Sign in
Spinor bundle
Spinor bundle
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Spinor bundle
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Spinor bundle Wikipedia article. Here, you can discuss, collect, and organize anything related to Spinor bundle. The purpose of the hub is to connect peopl...
Add your contribution
Spinor bundle

In differential geometry, given a spin structure on an -dimensional orientable Riemannian manifold one defines the spinor bundle to be the complex vector bundle associated to the corresponding principal bundle of spin frames over and the spin representation of its structure group on the space of spinors .

A section of the spinor bundle is called a spinor field.

Formal definition

[edit]

Let be a spin structure on a Riemannian manifold that is, an equivariant lift of the oriented orthonormal frame bundle with respect to the double covering of the special orthogonal group by the spin group.

The spinor bundle is defined [1] to be the complex vector bundle associated to the spin structure via the spin representation where denotes the group of unitary operators acting on a Hilbert space The spin representation is a faithful and unitary representation of the group [2]

See also

[edit]

Notes

[edit]
  1. ^ Friedrich, Thomas (2000), Dirac Operators in Riemannian Geometry, American Mathematical Society, ISBN 978-0-8218-2055-1 page 53
  2. ^ Friedrich, Thomas (2000), Dirac Operators in Riemannian Geometry, American Mathematical Society, ISBN 978-0-8218-2055-1 pages 20 and 24

Further reading

[edit]

|