Hubbry Logo
search button
Sign in
Lehmann–Scheffé theorem
Lehmann–Scheffé theorem
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Lehmann–Scheffé theorem
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Lehmann–Scheffé theorem Wikipedia article. Here, you can discuss, collect, and organize anything related to Lehmann–Scheffé theorem. The purpose of the hub...
Add your contribution
Lehmann–Scheffé theorem

In statistics, the Lehmann–Scheffé theorem ties together completeness, sufficiency, uniqueness, and best unbiased estimation.[1] The theorem states that any estimator that is unbiased for a given unknown quantity and that depends on the data only through a complete, sufficient statistic is the unique best unbiased estimator of that quantity. The Lehmann–Scheffé theorem is named after Erich Leo Lehmann and Henry Scheffé, given their two early papers.[2][3]

If is a complete sufficient statistic for and then is the uniformly minimum-variance unbiased estimator (UMVUE) of .

Statement

[edit]

Let be a random sample from a distribution that has p.d.f (or p.m.f in the discrete case) where is a parameter in the parameter space. Suppose is a sufficient statistic for θ, and let be a complete family. If then is the unique MVUE of θ.

Proof

[edit]

By the Rao–Blackwell theorem, if is an unbiased estimator of θ then defines an unbiased estimator of θ with the property that its variance is not greater than that of .

Now we show that this function is unique. Suppose is another candidate MVUE estimator of θ. Then again defines an unbiased estimator of θ with the property that its variance is not greater than that of . Then

Since is a complete family

and therefore the function is the unique function of Y with variance not greater than that of any other unbiased estimator. We conclude that is the MVUE.

Example for when using a non-complete minimal sufficient statistic

[edit]

An example of an improvable Rao–Blackwell improvement, when using a minimal sufficient statistic that is not complete, was provided by Galili and Meilijson in 2016.[4] Let be a random sample from a scale-uniform distribution with unknown mean and known design parameter . In the search for "best" possible unbiased estimators for , it is natural to consider as an initial (crude) unbiased estimator for and then try to improve it. Since is not a function of , the minimal sufficient statistic for (where and ), it may be improved using the Rao–Blackwell theorem as follows:

However, the following unbiased estimator can be shown to have lower variance:

And in fact, it could be even further improved when using the following estimator:

The model is a scale model. Optimal equivariant estimators can then be derived for loss functions that are invariant.[5]

See also

[edit]

References

[edit]
  1. ^ Casella, George (2001). Statistical Inference. Duxbury Press. p. 369. ISBN 978-0-534-24312-8.
  2. ^ Lehmann, E. L.; Scheffé, H. (1950). "Completeness, similar regions, and unbiased estimation. I." Sankhyā. 10 (4): 305–340. doi:10.1007/978-1-4614-1412-4_23. JSTOR 25048038. MR 0039201.
  3. ^ Lehmann, E.L.; Scheffé, H. (1955). "Completeness, similar regions, and unbiased estimation. II". Sankhyā. 15 (3): 219–236. doi:10.1007/978-1-4614-1412-4_24. JSTOR 25048243. MR 0072410.
  4. ^ Tal Galili; Isaac Meilijson (31 Mar 2016). "An Example of an Improvable Rao–Blackwell Improvement, Inefficient Maximum Likelihood Estimator, and Unbiased Generalized Bayes Estimator". The American Statistician. 70 (1): 108–113. doi:10.1080/00031305.2015.1100683. PMC 4960505. PMID 27499547.
  5. ^ Taraldsen, Gunnar (2020). "Micha Mandel (2020), "The Scaled Uniform Model Revisited," The American Statistician, 74:1, 98–100: Comment". The American Statistician. 74 (3): 315. doi:10.1080/00031305.2020.1769727. S2CID 219493070.