Recent from talks
Nothing was collected or created yet.
Solvated electron
View on WikipediaA solvated electron is a free electron in a solution, in which it behaves like an anion.[1] An electron's being solvated in a solution means it is bound by the solution.[2] The notation for a solvated electron in formulas of chemical reactions is "e−". Often, discussions of solvated electrons focus on their solutions in ammonia, which are stable for days, but solvated electrons also occur in water and many other solvents – in fact, in any solvent that mediates outer-sphere electron transfer. Solvated electrons are frequent objects of study in radiation chemistry. Salts containing solvated electrons are known as electrides.
Ammonia solutions
[edit]Liquid ammonia will dissolve all of the alkali metals and other electropositive metals such as Ca,[3] Sr, Ba, Eu, and Yb (also Mg using an electrolytic process[4]), giving characteristic blue solutions. For alkali metals in liquid ammonia, the solution is blue when dilute and copper-colored when more concentrated (> 3 molar).[5] These solutions conduct electricity. The blue colour of the solution is due to ammoniated electrons, which absorb energy in the visible region of light. The diffusivity of the solvated electron in liquid ammonia can be determined using potential-step chronoamperometry.[6]
Solvated electrons in ammonia are the anions of salts called electrides.
- Na + 6 NH3 → [Na(NH3)6]+ + e−
The reaction is reversible: evaporation of the ammonia solution produces a film of metallic sodium.
Case study: Li in NH3
[edit]
A lithium–ammonia solution at −60 °C is saturated at about 15 mol% metal (MPM). When the concentration is increased in this range electrical conductivity increases from 10−2 to 104 Ω−1cm−1 (larger than liquid mercury). At around 8 MPM, a "transition to the metallic state" (TMS) takes place (also called a "metal-to-nonmetal transition" (MNMT)). At 4 MPM a liquid-liquid phase separation takes place: the less dense gold-colored phase becomes immiscible from a denser blue phase. Above 8 MPM the solution is bronze/gold-colored. In the same concentration range the overall density decreases by 30%.
Other solvents
[edit]Alkali metals also dissolve in some small primary amines, such as methylamine and ethylamine[7] and hexamethylphosphoramide, forming blue solutions. Tetrahydrofuran (THF) dissolves alkali metal, but a Birch reduction (see § Applications) analogue does not proceed without a diamine ligand.[8] Solvated electron solutions of the alkaline earth metals magnesium, calcium, strontium and barium in ethylenediamine have been used to intercalate graphite with these metals.[9]
Water
[edit]Solvated electrons are involved in the reaction of alkali metals with water, even though the solvated electron has only a fleeting existence.[10] Below pH = 9.6 the hydrated electron reacts with the hydronium ion giving atomic hydrogen, which in turn can react with the hydrated electron giving hydroxide ion and usual molecular hydrogen H2.[11]
Solvated electrons can be found even in the gas phase. This implies their possible existence in the upper atmosphere of Earth and involvement in nucleation and aerosol formation.[12]
Its standard electrode potential value is −2.88 V.[13] The equivalent conductivity of 177 Mho cm2 is similar to that of hydroxide ion. This value of equivalent conductivity corresponds to a diffusivity of 4.75 cm2s−1.[14]
Reactivity
[edit]Although quite stable, the blue ammonia solutions containing solvated electrons degrade rapidly in the presence of catalysts to give colorless solutions of sodium amide:
- 2 [Na(NH3)6]+e− → H2 + 2 NaNH2 + 10 NH3
Electride salts can be isolated by the addition of macrocyclic ligands such as crown ether and cryptands to solutions containing solvated electrons. These ligands strongly bind the cations and prevent their re-reduction by the electron.
- [Na(NH3)6]+e− + cryptand → [Na(cryptand)]+e−+ 6 NH3
The solvated electron reacts with oxygen to form a superoxide radical (O2.−).[15] With nitrous oxide, solvated electrons react to form nitroxyl radicals (NO.).[16]
Uses
[edit]Solvated electrons are involved in electrode processes, a broad area with many technical applications (electrosynthesis, electroplating, electrowinning).
A specialized use of sodium-ammonia solutions is the Birch reduction. Other reactions where sodium is used as a reducing agent also are assumed to involve solvated electrons, e.g. the use of sodium in ethanol as in the Bouveault–Blanc reduction.
Work by Cullen et al. showed that metal-ammonia solutions can be used to intercalate a range of layered materials, which can then be exfoliated in polar, aprotic solvents, to produce ionic solutions of two-dimensional materials.[17] An example of this is the intercalation of graphite with potassium and ammonia, which is then exfoliated by spontaneous dissolution in THF to produce a graphenide solution. [18]
History
[edit]The observation of the color of metal-electride solutions is generally attributed to Humphry Davy. In 1807–1809, he examined the addition of grains of potassium to gaseous ammonia (liquefaction of ammonia was invented in 1823).[19] James Ballantyne Hannay and J. Hogarth repeated the experiments with sodium in 1879–1880.[20] W. Weyl in 1864 and C. A. Seely in 1871 used liquid ammonia, whereas Hamilton Cady in 1897 related the ionizing properties of ammonia to that of water.[21][22][23] Charles A. Kraus measured the electrical conductance of metal ammonia solutions and in 1907 attributed it to the electrons liberated from the metal.[24][25] In 1918, G. E. Gibson and W. L. Argo introduced the solvated electron concept.[26] They noted based on absorption spectra that different metals and different solvents (methylamine, ethylamine) produce the same blue color, attributed to a common species, the solvated electron. In the 1970s, solid salts containing electrons as the anion were characterized.[27]
References
[edit]- ^ Dye, J. L. (2003). "Electrons as Anions". Science. 301 (5633): 607–608. doi:10.1126/science.1088103. PMID 12893933. S2CID 93768664.
- ^ Schindewolf, U. (1968). "Formation and Properties of Solvated Electrons". Angewandte Chemie International Edition in English. 7 (3): 190–203. doi:10.1002/anie.196801901.
- ^ Edwin M. Kaiser (2001). "Calcium–Ammonia". Encyclopedia of Reagents for Organic Synthesis. doi:10.1002/047084289X.rc003. ISBN 978-0471936237.
- ^ Combellas, C; Kanoufi, F; Thiébault, A (2001). "Solutions of solvated electrons in liquid ammonia". Journal of Electroanalytical Chemistry. 499: 144–151. doi:10.1016/S0022-0728(00)00504-0.
- ^ Cotton, F. A.; Wilkinson, G. (1972). Advanced Inorganic Chemistry. John Wiley and Sons Inc. ISBN 978-0-471-17560-5.
- ^ Harima, Yutaka; Aoyagui, Shigeru (1980). "The diffusion coefficient of solvated electrons in liquid ammonia". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 109 (1–3): 167–177. doi:10.1016/S0022-0728(80)80115-X.
- ^ Greenwood, Norman N.; Earnshaw, Alan (1997). Chemistry of the Elements (2nd ed.). Butterworth-Heinemann. doi:10.1016/C2009-0-30414-6. ISBN 978-0-08-037941-8.
- ^ Burrows, James; Kamo, Shogo; Koide, Kazunori (2021-11-05). "Scalable Birch reduction with lithium and ethylenediamine in tetrahydrofuran". Science. 374 (6568): 741–746. Bibcode:2021Sci...374..741B. doi:10.1126/science.abk3099. ISSN 0036-8075. PMID 34735232. S2CID 243761715.
- ^ Xu, Wei; Lerner, Michael M. (2018). "A New and Facile Route Using Electride Solutions to Intercalate Alkaline Earth Ions into Graphite". Chemistry of Materials. 30 (19): 6930–6935. doi:10.1021/acs.chemmater.8b03421. S2CID 105295721.
- ^ Walker, D.C. (1966). "Production of hydrated electron". Canadian Journal of Chemistry. 44 (18): 2226–. doi:10.1139/v66-336.
- ^ Jortner, Joshua; Noyes, Richard M. (1966). "Some Thermodynamic Properties of the Hydrated Electron". The Journal of Physical Chemistry. 70 (3): 770–774. doi:10.1021/j100875a026.
- ^ Arnold, F. (1981). "Solvated electrons in the upper atmosphere". Nature. 294 (5843): 732–733. Bibcode:1981Natur.294..732A. doi:10.1038/294732a0. S2CID 4364255.
- ^ Baxendale, J. H. (1964). "Effects of Oxygen and pH in the Radiation Chemistry of Aqueous Solutions". Radiation Research Supplement. 4: 114–138. doi:10.2307/3583572. JSTOR 3583572.
- ^ Hart, Edwin J. (1969). "The Hydrated Electron". Survey of Progress in Chemistry. 5: 129–184. doi:10.1016/B978-0-12-395706-1.50010-8. ISBN 9780123957061. S2CID 94713398.
- ^ Hayyan, Maan; Hashim, Mohd Ali; Alnashef, Inas M. (2016). "Superoxide Ion: Generation and Chemical Implications". Chemical Reviews. 116 (5): 3029–3085. doi:10.1021/acs.chemrev.5b00407. PMID 26875845.
- ^ Janata, Eberhard; Schuler, Robert H. (1982). "Rate constant for scavenging eaq- in nitrous oxide-saturated solutions". The Journal of Physical Chemistry. 86 (11): 2078–2084. doi:10.1021/j100208a035.
- ^ Cullen, Patrick L.; Cox, Kathleen M.; Bin Subhan, Mohammed K.; Picco, Loren; Payton, Oliver D.; Buckley, David J.; Miller, Thomas S.; Hodge, Stephen A.; Skipper, Neal T.; Tileli, Vasiliki; Howard, Christopher A. (March 2017). "Ionic solutions of two-dimensional materials". Nature Chemistry. 9 (3): 244–249. Bibcode:2017NatCh...9..244C. doi:10.1038/nchem.2650. hdl:1983/360e652b-ca32-444d-b880-63aeac05f6ac. ISSN 1755-4349. PMID 28221358.
- ^ Angel, Gyen Ming A.; Mansor, Noramalina; Jervis, Rhodri; Rana, Zahra; Gibbs, Chris; Seel, Andrew; Kilpatrick, Alexander F. R.; Shearing, Paul R.; Howard, Christopher A.; Brett, Dan J. L.; Cullen, Patrick L. (6 August 2020). "Realising the electrochemical stability of graphene: scalable synthesis of an ultra-durable platinum catalyst for the oxygen reduction reaction". Nanoscale. 12 (30): 16113–16122. doi:10.1039/D0NR03326J. ISSN 2040-3372. PMID 32699875.
- ^ Thomas, Sir John Meurig; Edwards, Peter; Kuznetsov, Vladimir L. (January 2008). "Sir Humphry Davy: Boundless Chemist, Physicist, Poet and Man of Action". ChemPhysChem. 9 (1): 59–66. doi:10.1002/cphc.200700686. PMID 18175370.
An entry from Humphry Davy′s laboratory notebook of November 1808. It reads "When 8 Grains of potassium were heated in ammoniacal gas—it assumed a beautiful metallic appearance & gradually became of a fine blue colour".
- ^ Hannay, J. B.; Hogarth, James (26 February 1880). "On the solubility of solids in gases". Proceedings of the Royal Society of London. 30 (201): 178–188.
- ^ Weyl, W. (1864). "Ueber Metallammonium-Verbindungen" [On metal-ammonium compounds]. Annalen der Physik und Chemie (in German). 121 (4): 601–612. Bibcode:1864AnP...197..601W. doi:10.1002/andp.18641970407.
- See also: Weyl, W. (1864). "Ueber die Bildung des Ammoniums und einiger Ammonium-Metalle" [On the formation of ammonium and of some ammonium metals]. Annalen der Physik und Chemie (in German). 123 (10): 350–367. Bibcode:1864AnP...199..350W. doi:10.1002/andp.18641991008.
- ^ Seely, Charles A. (14 April 1871). "On ammonium and the solubility of metals without chemical action". The Chemical News. 23 (594): 169–170.
- ^ Cady, Hamilton P. (1897). "The electrolysis and electrolytic conductivity of certain substances dissolved in liquid ammonia". The Journal of Physical Chemistry. 1 (11): 707–713. doi:10.1021/j150593a001.
- ^ Kraus, Charles A. (1907). "Solutions of metals in non-metallic solvents; I. General properties of solutions of metals in liquid ammonia". J. Am. Chem. Soc. 29 (11): 1557–1571. Bibcode:1907JAChS..29.1557K. doi:10.1021/ja01965a003.
- ^ Zurek, Eva (2009). "A molecular perspective on lithium–ammonia solutions". Angew. Chem. Int. Ed. 48 (44): 8198–8232. doi:10.1002/anie.200900373. PMID 19821473.
- ^ Gibson, G. E.; Argo, W. L. (1918). "The absorption spectra of the blue solutions of certain alkali and alkaline earth metals in liquid ammonia and methylamine". J. Am. Chem. Soc. 40 (9): 1327–1361. Bibcode:1918JAChS..40.1327G. doi:10.1021/ja02242a003.
- ^ Dye, J. L. (2003). "Electrons as anions". Science. 301 (5633): 607–608. doi:10.1126/science.1088103. PMID 12893933. S2CID 93768664.
Further reading
[edit]- Sagar, D. M.; Colin; Bain, D.; Verlet, Jan R. R. (2010). "Hydrated Electrons at the Water/Air Interface". J. Am. Chem. Soc. 132 (20): 6917–6919. Bibcode:2010JAChS.132.6917S. doi:10.1021/ja101176r. PMID 20433171. S2CID 207049708.
- Martyna, Glenn (1993). "Electronic states in metal-ammonia solutions". Physical Review Letters. 71 (2): 267–270. Bibcode:1993PhRvL..71..267D. doi:10.1103/physrevlett.71.267. PMID 10054906.
- Martyna, Glenn (1993). "Quantum simulation studies of singlet and triplet bipolarons in liquid ammonia". Journal of Chemical Physics. 98 (1): 555–563. Bibcode:1993JChPh..98..555M. doi:10.1063/1.464650.
- Solvated Electron. Advances in Chemistry. Vol. 50. 1965. doi:10.1021/ba-1965-0050. ISBN 978-0-8412-0051-7.
- Anbar, Michael (1965). "Reactions of the Hydrated Electron". Solvated Electron. Advances in Chemistry. Vol. 50. pp. 55–81. doi:10.1021/ba-1965-0050.ch006. ISBN 978-0-8412-0051-7.
- Abel, B.; Buck, U.; Sobolewski, A. L.; Domcke, W. (2012). "On the nature and signatures of the solvated electron in water". Phys. Chem. Chem. Phys. 14 (1): 22–34. Bibcode:2012PCCP...14...22A. doi:10.1039/C1CP21803D. PMID 22075842.
- Harima, Y.; Aoyagui, S. (1981). "Determination of the chemical solvation energy of the solvated electron". Journal of Electroanalytical Chemistry and Interfacial Electrochemistry. 129 (1–2): 349–352. doi:10.1016/S0022-0728(81)80027-7.
- Hart, Edwin J. (1969). "The Hydrated Electron". Survey of Progress in Chemistry Volume 5. Vol. 5. pp. 129–184. doi:10.1016/B978-0-12-395706-1.50010-8. ISBN 9780123957061. S2CID 94713398.
- The electrochemistry of the solvated electron. Technische Universiteit Eindhoven.
- IAEA On the Electrolytic Generation of Hydrated Electron.
- Fundamentals of Radiation Chemistry, chapter 6, p. 145–198, Academic Press, 1999.
- Tables of bimolecular rate constants of hydrated electrons, hydrogen atoms and hydroxyl radicals with inorganic and organic compounds, International Journal of Applied Radiation and Isotopes Anbar, Neta
Solvated electron
View on GrokipediaIntroduction and Properties
Definition and Formation
A solvated electron is a free electron stabilized within a polar solvent by surrounding solvent molecules that form a solvation shell, effectively behaving as a distinct anionic species denoted as . This entity represents an excess electron delocalized over the solvent cage, acting as one of the strongest known reducing agents in solution chemistry. Solvated electrons form primarily through two general mechanisms in polar solvents. The first involves the dissolution of alkali metals, where metal atoms spontaneously ionize, releasing electrons that are captured and stabilized by the solvent molecules, accompanied by the corresponding alkali cations as counterions. The second mechanism entails the generation of excess electrons via radiolysis, where ionizing radiation ejects electrons from solvent molecules, or photolysis, using light to ionize the solvent or solutes, leading to electron solvation on ultrafast timescales typically within picoseconds.[4] Structurally, the solvated electron occupies a quasi-spherical cavity in the solvent, created by the rearrangement of solvent molecules to avoid close contact with the negatively charged electron. This cavity is stabilized by the oriented dipole moments of the first solvation shell, where polar solvent molecules align their positive ends toward the electron, with the counterion—such as an alkali metal cation in metal-dissolution cases—positioned nearby to maintain charge neutrality. This configuration underscores the solvated electron's role as a prerequisite for comprehending its solvent-dependent behaviors, providing the foundational model for subsequent physical and chemical properties.[5]Physical and Spectroscopic Properties
Solvated electrons exhibit a characteristic optical absorption spectrum consisting of a single broad and asymmetric band in the visible to near-infrared region, with the absorption maximum (λ_max) typically falling between 600 and 1500 nm, varying by solvent polarity and temperature. This broad feature arises from the electron's localization within a solvent cavity, where vibrational and solvent relaxation broaden the transition. The primary absorption band is theoretically assigned to the 1s → 2p electronic excitation of the quasi-free electron, analogous to atomic hydrogen-like transitions but modulated by the cavity potential.[6][7][8] Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy provides direct evidence for the paramagnetic nature of solvated electrons, stemming from their unpaired spin (S = 1/2). The EPR spectra typically display a narrow, symmetric singlet line with a g-factor close to 2.002, reflecting minimal hyperfine splitting due to the electron's delocalization over the solvent cage rather than strong coupling to specific nuclei. This spectral signature confirms the electron's localization in a transient cavity, distinguishing it from fully delocalized conduction electrons in metals.[9][10][11] In terms of transport properties, solvated electrons in dilute solutions (< 10^{-3} M) yield high electrical conductivity comparable to that of simple ions, arising from their role as charge carriers with significant mobility. However, conductivity diminishes at higher concentrations owing to ion pairing between electrons and counterions, which reduces the number of free carriers. The electron mobility μ is related to its diffusion coefficient D via the Einstein relation μ = eD/kT, with typical D values around 10^{-5} cm²/s at ambient temperatures, indicating a diffusion-controlled transport mechanism influenced by solvent viscosity.[10][12][13]Solvated Electrons in Solvents
In Liquid Ammonia
Solvated electrons in liquid ammonia are prepared by dissolving alkali metals such as lithium, sodium, or potassium in anhydrous ammonia at low temperatures, typically below its boiling point of -33°C, to prevent evaporation and ensure stability.[14] This process, first observed in the early 19th century but systematically studied later, yields solutions where the metal atoms ionize, releasing electrons that become solvated by ammonia molecules.[15] The resulting solutions exhibit distinct colors depending on concentration: dilute solutions below approximately 3 M display a deep blue hue due to the absorption by isolated solvated electrons, while concentrated solutions above this threshold adopt a metallic bronze or golden sheen arising from electron percolation and the onset of metallic character.[16] This color change reflects the transition from localized electron states in dilute regimes to delocalized, metallic-like behavior in more concentrated ones.[14] The electrical conductivity of these solutions follows a characteristic profile, increasing with metal concentration to a maximum around 4-5 mol percent metal (MPM), then decreasing at higher concentrations due to the metal-insulator transition dynamics.[17] Peak conductivities can reach up to 10^4 Ω^{-1} cm^{-1}, comparable to some poor metals, driven by contributions from both ionic motion and electron percolation in the metallic phase.[17] This behavior is explained by a homogeneous equilibrium between solvated electrons of low mobility and free electrons enabling metallic conduction.[18] The dissolution follows the equilibriumwhere M is the alkali metal, and the solvation numbers n and m typically range from 4 to 6 for the electron, forming a cavity stabilized by oriented ammonia dipoles.[19] For the cation, coordination is similarly around 4-6 ammonia molecules, ensuring charge balance in the solution.[20] A notable case is lithium in liquid ammonia, which saturates at approximately 15 mol% at -33°C, beyond which excess metal may precipitate.[21] At concentrations around 4 M, phase separation occurs into a dilute blue phase rich in isolated solvated electrons and a concentrated gold phase exhibiting metallic properties, particularly below the critical temperature of about 210 K.[21] This liquid-liquid immiscibility highlights the competition between electron solvation and metallic clustering.[22] Recent studies using ab initio molecular dynamics have revealed rapid electron pairing and state flipping in concentrated solutions (3-6 MPM), where electrons alternate between localized solvated and delocalized metallic configurations on sub-picosecond timescales, every ~29 fs at 3 MPM, influencing the overall solution dynamics.[14] These findings underscore the microscopic inhomogeneities, with nanometer-scale domains coexisting in the intermediate concentration regime.[14]
