Hubbry Logo
search button
Sign in
Semantics of logic
Semantics of logic
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Semantics of logic
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Semantics of logic Wikipedia article. Here, you can discuss, collect, and organize anything related to Semantics of logic. The purpose of the hub is to con...
Add your contribution
Semantics of logic

In logic, the semantics of logic or formal semantics is the study of the meaning and interpretation of formal languages, formal systems, and (idealizations of) natural languages. This field seeks to provide precise mathematical models that capture the pre-theoretic notions of truth, validity, and logical consequence. While logical syntax concerns the formal rules for constructing well-formed expressions, logical semantics establishes frameworks for determining when these expressions are true and what follows from them.

The development of formal semantics has led to several influential approaches, including model-theoretic semantics (pioneered by Alfred Tarski), proof-theoretic semantics (associated with Gerhard Gentzen and Michael Dummett), possible worlds semantics (developed by Saul Kripke and others for modal logic and related systems), algebraic semantics (connecting logic to abstract algebra), and game semantics (interpreting logical validity through game-theoretic concepts). These diverse approaches reflect different philosophical perspectives on the nature of meaning and truth in logical systems.

Overview

[edit]

The truth conditions of various sentences we may encounter in arguments will depend upon their meaning, and so logicians cannot completely avoid the need to provide some treatment of the meaning of these sentences. The semantics of logic refers to the approaches that logicians have introduced to understand and determine that part of meaning in which they are interested; the logician traditionally is not interested in the sentence as uttered but in the proposition, an idealised sentence suitable for logical manipulation.[citation needed]

Until the advent of modern logic, Aristotle's Organon, especially De Interpretatione, provided the basis for understanding the significance of logic. The introduction of quantification, needed to solve the problem of multiple generality, rendered impossible the kind of subject–predicate analysis that governed Aristotle's account, although there is a renewed interest in term logic, attempting to find calculi in the spirit of Aristotle's syllogisms, but with the generality of modern logics based on the quantifier.

The main modern approaches to semantics for formal languages are the following:

See also

[edit]

References

[edit]