Hubbry Logo
KinematicsKinematicsMain
Open search
Kinematics
Community hub
Kinematics
logo
7 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
Kinematics
Kinematics
from Wikipedia

In physics, kinematics studies the geometrical aspects of motion of physical objects independent of forces that set them in motion. Constrained motion such as linked machine parts are also described as kinematics.

Kinematics is concerned with systems of specification of objects' positions and velocities and mathematical transformations between such systems. These systems may be rectangular like Cartesian, Curvilinear coordinates like polar coordinates or other systems. The object trajectories may be specified with respect to other objects which may themselves be in motion relative to a standard reference. Rotating systems may also be used.

Numerous practical problems in kinematics involve constraints, such as mechanical linkages, ropes, or rolling disks.

Overview

[edit]

Kinematics is a subfield of physics and mathematics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies (groups of objects) without considering the forces that cause them to move.[1][2][3] Kinematics differs from dynamics (also known as kinetics) which studies the effect of forces on bodies.

Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of both applied and pure mathematics since it can be studied without considering the mass of a body or the forces acting upon it.[4][5][6] A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. In his work Space and its Nature, the scholar Ibn al-Haytham is credited with being the first to treat geometry and kinematics as a unified concept. To quantify the properties of space, he compared the dimensions of a body when it was in motion versus when it was at rest.[7]

Another way to describe kinematics is as the specification of the possible states of a physical system. Dynamics then describes the evolution of a system through such states. Robert Spekkens argues that this division cannot be empirically tested and thus has no physical basis.[8]

Kinematics is used in astrophysics to describe the motion of celestial bodies and collections of such bodies. In mechanical engineering, robotics, and biomechanics,[9] kinematics is used to describe the motion of systems composed of joined parts (multi-link systems) such as an engine, a robotic arm or the human skeleton.

Geometric transformations, including so-called rigid transformations, are used to describe the movement of components in a mechanical system, simplifying the derivation of the equations of motion. They are also central to dynamic analysis.

Kinematic analysis is the process of measuring the kinematic quantities used to describe motion. In engineering, for instance, kinematic analysis may be used to find the range of movement for a given mechanism and, working in reverse, using kinematic synthesis to design a mechanism for a desired range of motion.[10] In addition, kinematics applies algebraic geometry to the study of the mechanical advantage of a mechanical system or mechanism.

Relativistic kinematics applies the special theory of relativity to the geometry of object motion. It encompasses time dilation, length contraction and the Lorentz transformation.[11]: 12.8  The kinematics of relativity operates in a spacetime geometry where spatial points are augmented with a time coordinate to form 4-vectors.[12]: 221 

Werner Heisenberg reinterpreted classical kinetics for quantum systems in his 1925 paper "On the quantum-theoretical reinterpretation of kinematical and mechanical relationships".[13] Dirac noted the similarity in structure between Heisenberg's formulations and classical Poisson brackets.[14]: 143  In a follow up paper in 1927 Heisenberg showed that classical kinematic notions like velocity and energy are valid in quantum mechanics, but pairs of conjugate kinematic and dynamic quantities cannot be simultaneously measure, a result he called indeterminacy, but which became known as the uncertainty principle.[15]

Etymology

[edit]

The term kinematic is the English version of A.M. Ampère's cinématique,[16] which he constructed from the Greek κίνημα kinema ("movement, motion"), itself derived from κινεῖν kinein ("to move").[17][18]

Kinematic and cinématique are related to the French word cinéma, but neither are directly derived from it. However, they do share a root word in common, as cinéma came from the shortened form of cinématographe, "motion picture projector and camera", once again from the Greek word for movement and from the Greek γρᾰ́φω grapho ("to write").[19]

Kinematics of a particle trajectory in a non-rotating frame of reference

[edit]
Kinematic quantities of a classical particle: mass m, position r, velocity v, acceleration a.
Position vector r, always points radially from the origin.
Velocity vector v, always tangent to the path of motion.
Acceleration vector a, not parallel to the radial motion but offset by the angular and Coriolis accelerations, nor tangent to the path but offset by the centripetal and radial accelerations.
Kinematic vectors in plane polar coordinates. Notice the setup is not restricted to 2-d space, but a plane in any higher dimension.

Particle kinematics is the study of the trajectory of particles. The position of a particle is defined as the coordinate vector from the origin of a coordinate frame to the particle. For example, consider a tower 50 m south from your home, where the coordinate frame is centered at your home, such that east is in the direction of the x-axis and north is in the direction of the y-axis, then the coordinate vector to the base of the tower is r = (0 m, −50 m, 0 m). If the tower is 50 m high, and this height is measured along the z-axis, then the coordinate vector to the top of the tower is r = (0 m, –50 m, 50 m).

In the most general case, a three-dimensional coordinate system is used to define the position of a particle. However, if the particle is constrained to move within a plane, a two-dimensional coordinate system is sufficient. All observations in physics are incomplete without being described with respect to a reference frame.

The position vector of a particle is a vector drawn from the origin of the reference frame to the particle. It expresses both the distance of the point from the origin and its direction from the origin. In three dimensions, the position vector can be expressed as where , , and are the Cartesian coordinates and , and are the unit vectors along the , , and coordinate axes, respectively. The magnitude of the position vector gives the distance between the point and the origin. The direction cosines of the position vector provide a quantitative measure of direction. In general, an object's position vector will depend on the frame of reference; different frames will lead to different values for the position vector.

The trajectory of a particle is a vector function of time, , which defines the curve traced by the moving particle, given by where , , and describe each coordinate of the particle's position as a function of time.

The distance travelled is always greater than or equal to the displacement.

Velocity and speed

[edit]

The velocity of a particle is a vector quantity that describes the direction as well as the magnitude of motion of the particle. More mathematically, the rate of change of the position vector of a point with respect to time is the velocity of the point. Consider the ratio formed by dividing the difference of two positions of a particle (displacement) by the time interval. This ratio is called the average velocity over that time interval and is defined aswhere is the displacement vector during the time interval . In the limit that the time interval approaches zero, the average velocity approaches the instantaneous velocity, defined as the time derivative of the position vector, Thus, a particle's velocity is the time rate of change of its position. Furthermore, this velocity is tangent to the particle's trajectory at every position along its path. In a non-rotating frame of reference, the derivatives of the coordinate directions are not considered as their directions and magnitudes are constants.

The speed of an object is the magnitude of its velocity. It is a scalar quantity: where is the arc-length measured along the trajectory of the particle. This arc-length must always increase as the particle moves. Hence, is non-negative, which implies that speed is also non-negative.

Acceleration

[edit]

The velocity vector can change in magnitude and in direction or both at once. Hence, the acceleration accounts for both the rate of change of the magnitude of the velocity vector and the rate of change of direction of that vector. The same reasoning used with respect to the position of a particle to define velocity, can be applied to the velocity to define acceleration. The acceleration of a particle is the vector defined by the rate of change of the velocity vector. The average acceleration of a particle over a time interval is defined as the ratio. where Δv is the average velocity and Δt is the time interval.

The acceleration of the particle is the limit of the average acceleration as the time interval approaches zero, which is the time derivative,

Alternatively,

Thus, acceleration is the first derivative of the velocity vector and the second derivative of the position vector of that particle. In a non-rotating frame of reference, the derivatives of the coordinate directions are not considered as their directions and magnitudes are constants.

The magnitude of the acceleration of an object is the magnitude |a| of its acceleration vector. It is a scalar quantity:

Relative position vector

[edit]

A relative position vector is a vector that defines the position of one point relative to another. It is the difference in position of the two points. The position of one point A relative to another point B is simply the difference between their positions

which is the difference between the components of their position vectors.

If point A has position components

and point B has position components

then the position of point A relative to point B is the difference between their components:

Relative velocity

[edit]
Relative velocities between two particles in classical mechanics.

The velocity of one point relative to another is simply the difference between their velocities which is the difference between the components of their velocities.

If point A has velocity components and point B has velocity components then the velocity of point A relative to point B is the difference between their components:

Alternatively, this same result could be obtained by computing the time derivative of the relative position vector rB/A.

Relative acceleration

[edit]

The acceleration of one point C relative to another point B is simply the difference between their accelerations. which is the difference between the components of their accelerations.

If point C has acceleration components and point B has acceleration components then the acceleration of point C relative to point B is the difference between their components:

Assuming that the initial conditions of the position, , and velocity at time are known, the first integration yields the velocity of the particle as a function of time.[20]

Additional relations between displacement, velocity, acceleration, and time can be derived. If the acceleration is constant, can be substituted into the above equation to give:

A relationship between velocity, position and acceleration without explicit time dependence can be obtained by solving the average acceleration for time and substituting and simplifying

where denotes the dot product, which is appropriate as the products are scalars rather than vectors.

The dot product can be replaced by the cosine of the angle α between the vectors (see Geometric interpretation of the dot product for more details) and the vectors by their magnitudes, in which case:

In the case of acceleration always in the direction of the motion and the direction of motion should be in positive or negative, the angle between the vectors (α) is 0, so , and This can be simplified using the notation for the magnitudes of the vectors [citation needed] where can be any curvaceous path taken as the constant tangential acceleration is applied along that path[citation needed], so

This reduces the parametric equations of motion of the particle to a Cartesian relationship of speed versus position. This relation is useful when time is unknown. We also know that or is the area under a velocity–time graph.[21]

Velocity Time physics graph

We can take by adding the top area and the bottom area. The bottom area is a rectangle, and the area of a rectangle is the where is the width and is the height. In this case and (the here is different from the acceleration ). This means that the bottom area is . Now let's find the top area (a triangle). The area of a triangle is where is the base and is the height.[22] In this case, and or . Adding and results in the equation results in the equation .[23] This equation is applicable when the final velocity v is unknown.

Figure 2: Velocity and acceleration for nonuniform circular motion: the velocity vector is tangential to the orbit, but the acceleration vector is not radially inward because of its tangential component aθ that increases the rate of rotation: dω/dt = |aθ|/R.

Particle trajectories in cylindrical-polar coordinates

[edit]

It is often convenient to formulate the trajectory of a particle r(t) = (x(t), y(t), z(t)) using polar coordinates in the XY plane. In this case, its velocity and acceleration take a convenient form.

Recall that the trajectory of a particle P is defined by its coordinate vector r measured in a fixed reference frame F. As the particle moves, its coordinate vector r(t) traces its trajectory, which is a curve in space, given by: where , ŷ, and are the unit vectors along the x, y and z axes of the reference frame F, respectively.

Consider a particle P that moves only on the surface of a circular cylinder r(t) = constant, it is possible to align the z axis of the fixed frame F with the axis of the cylinder. Then, the angle θ around this axis in the xy plane can be used to define the trajectory as, where the constant distance from the center is denoted as r, and θ(t) is a function of time.

The cylindrical coordinates for r(t) can be simplified by introducing the radial and tangential unit vectors, and their time derivatives from elementary calculus:

Using this notation, r(t) takes the form, In general, the trajectory r(t) is not constrained to lie on a circular cylinder, so the radius R varies with time and the trajectory of the particle in cylindrical-polar coordinates becomes: Where r, θ, and z might be continuously differentiable functions of time and the function notation is dropped for simplicity. The velocity vector vP is the time derivative of the trajectory r(t), which yields:

Similarly, the acceleration aP, which is the time derivative of the velocity vP, is given by:

The term acts toward the center of curvature of the path at that point on the path, is commonly called the centripetal acceleration. The term is called the Coriolis acceleration.

Constant radius

[edit]

If the trajectory of the particle is constrained to lie on a cylinder, then the radius r is constant and the velocity and acceleration vectors simplify. The velocity of vP is the time derivative of the trajectory r(t),

Planar circular trajectories

[edit]
Kinematics of Machinery
Each particle on the wheel travels in a planar circular trajectory (Kinematics of Machinery, 1876).[24]

A special case of a particle trajectory on a circular cylinder occurs when there is no movement along the z axis: where r and z0 are constants. In this case, the velocity vP is given by: where is the angular velocity of the unit vector θ^ around the z axis of the cylinder.

The acceleration aP of the particle P is now given by:

The components are called, respectively, the radial and tangential components of acceleration.

The notation for angular velocity and angular acceleration is often defined as so the radial and tangential acceleration components for circular trajectories are also written as

Point trajectories in a body moving in the plane

[edit]

The movement of components of a mechanical system are analyzed by attaching a reference frame to each part and determining how the various reference frames move relative to each other. If the structural stiffness of the parts are sufficient, then their deformation can be neglected and rigid transformations can be used to define this relative movement. This reduces the description of the motion of the various parts of a complicated mechanical system to a problem of describing the geometry of each part and geometric association of each part relative to other parts.

Geometry is the study of the properties of figures that remain the same while the space is transformed in various ways—more technically, it is the study of invariants under a set of transformations.[25] These transformations can cause the displacement of the triangle in the plane, while leaving the vertex angle and the distances between vertices unchanged. Kinematics is often described as applied geometry, where the movement of a mechanical system is described using the rigid transformations of Euclidean geometry.

The coordinates of points in a plane are two-dimensional vectors in R2 (two dimensional space). Rigid transformations are those that preserve the distance between any two points. The set of rigid transformations in an n-dimensional space is called the special Euclidean group on Rn, and denoted SE(n).

Displacements and motion

[edit]
Boulton & Watt Steam Engine
The movement of each of the components of the Boulton & Watt Steam Engine (1784) is modeled by a continuous set of rigid displacements.

The position of one component of a mechanical system relative to another is defined by introducing a reference frame, say M, on one that moves relative to a fixed frame, F, on the other. The rigid transformation, or displacement, of M relative to F defines the relative position of the two components. A displacement consists of the combination of a rotation and a translation.

The set of all displacements of M relative to F is called the configuration space of M. A smooth curve from one position to another in this configuration space is a continuous set of displacements, called the motion of M relative to F. The motion of a body consists of a continuous set of rotations and translations.

Matrix representation

[edit]

The combination of a rotation and translation in the plane R2 can be represented by a certain type of 3×3 matrix known as a homogeneous transform. The 3×3 homogeneous transform is constructed from a 2×2 rotation matrix A(φ) and the 2×1 translation vector d = (dx, dy), as: These homogeneous transforms perform rigid transformations on the points in the plane z = 1, that is, on points with coordinates r = (x, y, 1).

In particular, let r define the coordinates of points in a reference frame M coincident with a fixed frame F. Then, when the origin of M is displaced by the translation vector d relative to the origin of F and rotated by the angle φ relative to the x-axis of F, the new coordinates in F of points in M are given by:

Homogeneous transforms represent affine transformations. This formulation is necessary because a translation is not a linear transformation of R2. However, using projective geometry, so that R2 is considered a subset of R3, translations become affine linear transformations.[26]

Pure translation

[edit]

If a rigid body moves so that its reference frame M does not rotate (θ = 0) relative to the fixed frame F, the motion is called pure translation. In this case, the trajectory of every point in the body is an offset of the trajectory d(t) of the origin of M, that is:

Thus, for bodies in pure translation, the velocity and acceleration of every point P in the body are given by: where the dot denotes the derivative with respect to time and vO and aO are the velocity and acceleration, respectively, of the origin of the moving frame M. Recall the coordinate vector p in M is constant, so its derivative is zero.

Rotation of a body around a fixed axis

[edit]
Figure 1: The angular velocity vector Ω points up for counterclockwise rotation and down for clockwise rotation, as specified by the right-hand rule. Angular position θ(t) changes with time at a rate ω(t) = dθ/dt.

Objects like a playground merry-go-round, ventilation fans, or hinged doors can be modeled as rigid bodies rotating about a single fixed axis.[27]: 37  The z-axis has been chosen by convention.

Position

[edit]

This allows the description of a rotation as the angular position of a planar reference frame M relative to a fixed F about this shared z-axis. Coordinates p = (x, y) in M are related to coordinates P = (X, Y) in F by the matrix equation:

where is the rotation matrix that defines the angular position of M relative to F as a function of time.

Velocity

[edit]

If the point p does not move in M, its velocity in F is given by It is convenient to eliminate the coordinates p and write this as an operation on the trajectory P(t), where the matrix is known as the angular velocity matrix of M relative to F. The parameter ω is the time derivative of the angle θ, that is:

Acceleration

[edit]

The acceleration of P(t) in F is obtained as the time derivative of the velocity, which becomes where is the angular acceleration matrix of M on F, and

The description of rotation then involves these three quantities:

  • Angular position: the oriented distance from a selected origin on the rotational axis to a point of an object is a vector r(t) locating the point. The vector r(t) has some projection (or, equivalently, some component) r(t) on a plane perpendicular to the axis of rotation. Then the angular position of that point is the angle θ from a reference axis (typically the positive x-axis) to the vector r(t) in a known rotation sense (typically given by the right-hand rule).
  • Angular velocity: the angular velocity ω is the rate at which the angular position θ changes with respect to time t: The angular velocity is represented in Figure 1 by a vector Ω pointing along the axis of rotation with magnitude ω and sense determined by the direction of rotation as given by the right-hand rule.
  • Angular acceleration: the magnitude of the angular acceleration α is the rate at which the angular velocity ω changes with respect to time t:

The equations of translational kinematics can easily be extended to planar rotational kinematics for constant angular acceleration with simple variable exchanges:

Here θi and θf are, respectively, the initial and final angular positions, ωi and ωf are, respectively, the initial and final angular velocities, and α is the constant angular acceleration. Although position in space and velocity in space are both true vectors (in terms of their properties under rotation), as is angular velocity, angle itself is not a true vector.

Point trajectories in body moving in three dimensions

[edit]

Important formulas in kinematics define the velocity and acceleration of points in a moving body as they trace trajectories in three-dimensional space. This is particularly important for the center of mass of a body, which is used to derive equations of motion using either Newton's second law or Lagrange's equations.

Position

[edit]

In order to define these formulas, the movement of a component B of a mechanical system is defined by the set of rotations [A(t)] and translations d(t) assembled into the homogeneous transformation [T(t)]=[A(t), d(t)]. If p is the coordinates of a point P in B measured in the moving reference frame M, then the trajectory of this point traced in F is given by: This notation does not distinguish between P = (X, Y, Z, 1), and P = (X, Y, Z), which is hopefully clear in context.

This equation for the trajectory of P can be inverted to compute the coordinate vector p in M as: This expression uses the fact that the transpose of a rotation matrix is also its inverse, that is:

Velocity

[edit]

The velocity of the point P along its trajectory P(t) is obtained as the time derivative of this position vector, The dot denotes the derivative with respect to time; because p is constant, its derivative is zero.

This formula can be modified to obtain the velocity of P by operating on its trajectory P(t) measured in the fixed frame F. Substituting the inverse transform for p into the velocity equation yields: The matrix [S] is given by: where is the angular velocity matrix.

Multiplying by the operator [S], the formula for the velocity vP takes the form: where the vector ω is the angular velocity vector obtained from the components of the matrix [Ω]; the vector is the position of P relative to the origin O of the moving frame M; and is the velocity of the origin O.

Acceleration

[edit]

The acceleration of a point P in a moving body B is obtained as the time derivative of its velocity vector:

This equation can be expanded firstly by computing and

The formula for the acceleration AP can now be obtained as: or where α is the angular acceleration vector obtained from the derivative of the angular velocity vector; is the relative position vector (the position of P relative to the origin O of the moving frame M); and is the acceleration of the origin of the moving frame M.

Kinematic constraints

[edit]

Kinematic constraints are constraints on the movement of components of a mechanical system. Kinematic constraints can be considered to have two basic forms, (i) constraints that arise from hinges, sliders and cam joints that define the construction of the system, called holonomic constraints, and (ii) constraints imposed on the velocity of the system such as the knife-edge constraint of ice-skates on a flat plane, or rolling without slipping of a disc or sphere in contact with a plane, which are called non-holonomic constraints. The following are some common examples.

Kinematic coupling

[edit]

A kinematic coupling exactly constrains all 6 degrees of freedom.

Rolling without slipping

[edit]

An object that rolls against a surface without slipping obeys the condition that the velocity of its center of mass is equal to the cross product of its angular velocity with a vector from the point of contact to the center of mass:

For the case of an object that does not tip or turn, this reduces to .

Inextensible cord

[edit]

This is the case where bodies are connected by an idealized cord that remains in tension and cannot change length. The constraint is that the sum of lengths of all segments of the cord is the total length, and accordingly the time derivative of this sum is zero.[28][29][30] A dynamic problem of this type is the pendulum. Another example is a drum turned by the pull of gravity upon a falling weight attached to the rim by the inextensible cord.[31] An equilibrium problem (i.e. not kinematic) of this type is the catenary.[32]

Kinematic pairs

[edit]

Reuleaux called the ideal connections between components that form a machine kinematic pairs. He distinguished between higher pairs which were said to have line contact between the two links and lower pairs that have area contact between the links. J. Phillips shows that there are many ways to construct pairs that do not fit this simple classification.[33]

Lower pair

[edit]

A lower pair is an ideal joint, or holonomic constraint, that maintains contact between a point, line or plane in a moving solid (three-dimensional) body to a corresponding point line or plane in the fixed solid body. There are the following cases:

  • A revolute pair, or hinged joint, requires a line, or axis, in the moving body to remain co-linear with a line in the fixed body, and a plane perpendicular to this line in the moving body maintain contact with a similar perpendicular plane in the fixed body. This imposes five constraints on the relative movement of the links, which therefore has one degree of freedom, which is pure rotation about the axis of the hinge.
  • A prismatic joint, or slider, requires that a line, or axis, in the moving body remain co-linear with a line in the fixed body, and a plane parallel to this line in the moving body maintain contact with a similar parallel plane in the fixed body. This imposes five constraints on the relative movement of the links, which therefore has one degree of freedom. This degree of freedom is the distance of the slide along the line.
  • A cylindrical joint requires that a line, or axis, in the moving body remain co-linear with a line in the fixed body. It is a combination of a revolute joint and a sliding joint. This joint has two degrees of freedom. The position of the moving body is defined by both the rotation about and slide along the axis.
  • A spherical joint, or ball joint, requires that a point in the moving body maintain contact with a point in the fixed body. This joint has three degrees of freedom.
  • A planar joint requires that a plane in the moving body maintain contact with a plane in fixed body. This joint has three degrees of freedom.

Higher pairs

[edit]

Generally speaking, a higher pair is a constraint that requires a curve or surface in the moving body to maintain contact with a curve or surface in the fixed body. For example, the contact between a cam and its follower is a higher pair called a cam joint. Similarly, the contact between the involute curves that form the meshing teeth of two gears are cam joints.

Kinematic chains

[edit]
Illustration of a Four-bar linkage from Kinematics of Machinery, 1876
Illustration of a four-bar linkage from Kinematics of Machinery, 1876

Rigid bodies ("links") connected by kinematic pairs ("joints") are known as kinematic chains. Mechanisms and robots are examples of kinematic chains. The degree of freedom of a kinematic chain is computed from the number of links and the number and type of joints using the mobility formula. This formula can also be used to enumerate the topologies of kinematic chains that have a given degree of freedom, which is known as type synthesis in machine design.

Examples

[edit]

The planar one degree-of-freedom linkages assembled from N links and j hinges or sliding joints are:

  • N = 2, j = 1 : a two-bar linkage that is the lever;
  • N = 4, j = 4 : the four-bar linkage;
  • N = 6, j = 7 : a six-bar linkage. This must have two links ("ternary links") that support three joints. There are two distinct topologies that depend on how the two ternary linkages are connected. In the Watt topology, the two ternary links have a common joint; in the Stephenson topology, the two ternary links do not have a common joint and are connected by binary links.[34]
  • N = 8, j = 10 : eight-bar linkage with 16 different topologies;
  • N = 10, j = 13 : ten-bar linkage with 230 different topologies;
  • N = 12, j = 16 : twelve-bar linkage with 6,856 topologies.

For larger chains and their linkage topologies, see R. P. Sunkari and L. C. Schmidt, "Structural synthesis of planar kinematic chains by adapting a Mckay-type algorithm", Mechanism and Machine Theory #41, pp. 1021–1030 (2006).

See also

[edit]

References

[edit]

Further reading

[edit]
[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
from Grokipedia
Kinematics is the branch of classical mechanics in physics that describes the motion of points, objects, and systems of objects without regard to the forces or causes producing that motion. The term originates from the Greek word kinesis, meaning "motion," reflecting its focus on the geometric and temporal aspects of movement. It serves as a foundational component of physics, enabling the analysis of trajectories, speeds, and changes in motion through mathematical descriptions rather than causal explanations. Central to kinematics are key concepts such as position, which specifies an object's location in space; displacement, the change in position from one point to another; velocity, the rate of change of position with respect to time (a vector quantity including direction); and acceleration, the rate of change of velocity. These quantities are analyzed in one-dimensional (linear), two-dimensional (planar), or three-dimensional contexts, often using vector notation and calculus-based derivatives to relate instantaneous values. For constant acceleration scenarios, such as projectile motion under gravity, standard equations like v=u+atv = u + at (where vv is final velocity, uu is initial velocity, aa is acceleration, and tt is time) and s=ut+12at2s = ut + \frac{1}{2}at^2 (where ss is displacement) provide precise predictions of motion paths and timings. Kinematics underpins broader fields in physics and engineering by providing the descriptive framework for dynamics, where forces are introduced to explain motion causes. Practical applications span diverse areas, including the design of robotic arms and vehicle trajectories in mechanical engineering, the simulation of projectile paths in ballistics, the modeling of orbital mechanics for spacecraft, computer graphics and animation for realistic object movements, and biomechanics for describing human and animal locomotion. This analytical approach ensures kinematics remains essential for both theoretical studies and real-world problem-solving across disciplines.

Introduction

Overview

Kinematics is the branch of classical mechanics that describes the motion of points, bodies, and systems of bodies using geometric variables such as position, velocity, and acceleration, without considering the forces or other physical causes that produce the motion. This approach focuses solely on the spatial and temporal aspects of motion, enabling the prediction of trajectories and orientations under given constraints. Unlike dynamics, which incorporates the effects of forces to explain why motion occurs, kinematics disregards such causal factors and treats motion as purely descriptive. Statics, in contrast, deals exclusively with bodies at rest or in equilibrium, where no motion is present. As a foundational component of classical mechanics, kinematics originated in the development of Newtonian physics and finds wide applications in modern fields such as robotics for manipulator trajectory planning, computer animation for realistic motion simulation, vehicle suspension design to optimize handling, and biomechanics to analyze joint movements. It operates under key assumptions, including non-relativistic speeds much lower than the speed of light, motion in Euclidean three-dimensional space, and reference frames that are inertial.

Etymology and History

The term "kinematics" derives from the Ancient Greek word kinēma (κίνημα), meaning "movement" or "motion," which itself stems from the verb kinein (κινεῖν), "to move." This etymological root reflects the field's focus on describing motion without regard to causes such as forces. The modern usage was coined by the French physicist André-Marie Ampère around 1830–1834, who introduced the French term cinématique to denote a branch of mechanics concerned solely with the geometry of motion, independent of mass or force considerations. The English term "kinematics" emerged shortly thereafter, around 1840, formalizing the discipline within 19th-century analytical mechanics. Early conceptions of motion trace back to ancient philosophy, where Aristotle (384–322 BCE) provided a descriptive framework rooted in teleology, viewing motion as the actualization of potentiality in natural objects and emphasizing purpose-driven changes rather than quantitative geometry. This qualitative approach dominated until the Scientific Revolution, when kinematics began evolving toward empirical and analytical descriptions. In the 17th century, Galileo Galilei (1564–1642) laid foundational milestones through his studies of projectile motion and free fall, demonstrating that objects accelerate uniformly under gravity and introducing kinematic principles like constant acceleration, which separated motion description from Aristotelian teleology. Isaac Newton (1643–1727) further influenced the field with his Philosophiæ Naturalis Principia Mathematica (1687), where his laws of motion provided a dynamical basis that highlighted kinematics as the geometric counterpart to force-based explanations. By the 18th century, Leonhard Euler (1707–1783) advanced rigid body kinematics in his seminal 1765 treatise Theoria Motus Corporum Solidorum seu Rigidorum, which systematically analyzed the rotation and translation of solid bodies using early analytical methods, establishing key concepts like the center of mass and progressive motion. The 19th century marked a shift to fully analytical kinematics, incorporating vector calculus—developed by figures like William Rowan Hamilton and Hermann Grassmann—to describe motion in three dimensions with greater precision. A pivotal contribution was Michel Chasles' 1830 screw theory, which proved that any rigid body displacement in Euclidean space can be represented as a rotation and translation along a single line (the screw axis), unifying instantaneous and finite motions. In the 20th century, kinematics expanded beyond classical mechanics into applied fields, driven by computational advances. Developments in computer graphics utilized forward and inverse kinematics for animating articulated figures, while robotics leveraged screw theory and vector methods for manipulator design and path planning, enabling precise control of multi-joint systems. These extensions built on 19th-century foundations, transforming kinematics into a cornerstone of modern engineering and simulation technologies.

Fundamentals of Particle Kinematics

Position, Velocity, and Speed

In kinematics, the position of a particle within an inertial reference frame is specified by the position vector r(t)\vec{r}(t)
Add your contribution
Related Hubs
User Avatar
No comments yet.