Hubbry Logo
search button
Sign in
Bessel process
Bessel process
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Bessel process
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Bessel process Wikipedia article. Here, you can discuss, collect, and organize anything related to Bessel process. The purpose of the hub is to connect peo...
Add your contribution
Bessel process

In mathematics, a Bessel process, named after Friedrich Bessel, is a type of stochastic process.

Formal definition

[edit]
Three realizations of Bessel Processes.

The Bessel process of order n is the real-valued process X given (when n ≥ 2) by

where ||·|| denotes the Euclidean norm in Rn and W is an n-dimensional Wiener process (Brownian motion). For any n, the n-dimensional Bessel process is the solution to the stochastic differential equation (SDE)

where W is a 1-dimensional Wiener process (Brownian motion). Note that this SDE makes sense for any real parameter (although the drift term is singular at zero).

Notation

[edit]

A notation for the Bessel process of dimension n started at zero is BES0(n).

In specific dimensions

[edit]

For n ≥ 2, the n-dimensional Wiener process started at the origin is transient from its starting point: with probability one, i.e., Xt > 0 for all t > 0. It is, however, neighbourhood-recurrent for n = 2, meaning that with probability 1, for any r > 0, there are arbitrarily large t with Xt < r; on the other hand, it is truly transient for n > 2, meaning that Xt ≥ r for all t sufficiently large.

For n ≤ 0, the Bessel process is usually started at points other than 0, since the drift to 0 is so strong that the process becomes stuck at 0 as soon as it hits 0.

Relationship with Brownian motion

[edit]

0- and 2-dimensional Bessel processes are related to local times of Brownian motion via the Ray–Knight theorems.[1]

The law of a Brownian motion near x-extrema is the law of a 3-dimensional Bessel process (theorem of Tanaka).

References

[edit]
  1. ^ Revuz, D.; Yor, M. (1999). Continuous Martingales and Brownian Motion. Berlin: Springer. ISBN 3-540-52167-4.
  • Øksendal, Bernt (2003). Stochastic Differential Equations: An Introduction with Applications. Berlin: Springer. ISBN 3-540-04758-1.
  • Williams D. (1979) Diffusions, Markov Processes and Martingales, Volume 1 : Foundations. Wiley. ISBN 0-471-99705-6.