Recent from talks
All channels
Be the first to start a discussion here.
Be the first to start a discussion here.
Be the first to start a discussion here.
Be the first to start a discussion here.
Welcome to the community hub built to collect knowledge and have discussions related to Maximal ergodic theorem.
Nothing was collected or created yet.
Maximal ergodic theorem
View on Wikipediafrom Wikipedia
This article relies largely or entirely on a single source. (March 2024) |
The maximal ergodic theorem is a theorem in ergodic theory, a discipline within mathematics.
Suppose that is a probability space, that is a (possibly noninvertible) measure-preserving transformation, and that . Define by
Then the maximal ergodic theorem states that
for any λ ∈ R.
This theorem is used to prove the point-wise ergodic theorem.
References
[edit]- Keane, Michael; Petersen, Karl (2006), "Easy and nearly simultaneous proofs of the Ergodic Theorem and Maximal Ergodic Theorem", Dynamics & Stochastics, Institute of Mathematical Statistics Lecture Notes - Monograph Series, vol. 48, pp. 248–251, arXiv:math/0004070, doi:10.1214/074921706000000266, ISBN 0-940600-64-1.
