Hubbry Logo
search button
Sign in
Progressively measurable process
Progressively measurable process
Comunity Hub
History
arrow-down
starMore
arrow-down
bob

Bob

Have a question related to this hub?

bob

Alice

Got something to say related to this hub?
Share it here.

#general is a chat channel to discuss anything related to the hub.
Hubbry Logo
search button
Sign in
Progressively measurable process
Community hub for the Wikipedia article
logoWikipedian hub
Welcome to the community hub built on top of the Progressively measurable process Wikipedia article. Here, you can discuss, collect, and organize anything related to Progressively measurable process. The ...
Add your contribution
Progressively measurable process

In mathematics, progressive measurability is a property in the theory of stochastic processes. A progressively measurable process, while defined quite technically, is important because it implies the stopped process is measurable. Being progressively measurable is a strictly stronger property than the notion of being an adapted process.[1] Progressively measurable processes are important in the theory of Itô integrals.

Definition

[edit]

Let

  • be a probability space;
  • be a measurable space, the state space;
  • be a filtration of the sigma algebra ;
  • be a stochastic process (the index set could be or instead of );
  • be the Borel sigma algebra on .

The process is said to be progressively measurable[2] (or simply progressive) if, for every time , the map defined by is -measurable. This implies that is -adapted.[1]

A subset is said to be progressively measurable if the process is progressively measurable in the sense defined above, where is the indicator function of . The set of all such subsets form a sigma algebra on , denoted by , and a process is progressively measurable in the sense of the previous paragraph if, and only if, it is -measurable.

Properties

[edit]
  • It can be shown[1] that , the space of stochastic processes for which the Itô integral
with respect to Brownian motion is defined, is the set of equivalence classes of -measurable processes in .
  • Every adapted process with left- or right-continuous paths is progressively measurable. Consequently, every adapted process with càdlàg paths is progressively measurable.[1]
  • Every measurable and adapted process has a progressively measurable modification.[1]

References

[edit]
  1. ^ a b c d e Karatzas, Ioannis; Shreve, Steven (1991). Brownian Motion and Stochastic Calculus (2nd ed.). Springer. pp. 4–5. ISBN 0-387-97655-8.
  2. ^ Pascucci, Andrea (2011). "Continuous-time stochastic processes". PDE and Martingale Methods in Option Pricing. Bocconi & Springer Series. Springer. p. 110. doi:10.1007/978-88-470-1781-8. ISBN 978-88-470-1780-1. S2CID 118113178.