Hubbry Logo
QuadroQuadroMain
Open search
Quadro
Community hub
Quadro
logo
8 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
Quadro
Quadro
from Wikipedia
Quadro
Nvidia Quadro P6000
Release dateJanuary 1, 2000; 26 years ago (2000-01-01)
DiscontinuedOctober 5, 2020; 5 years ago (2020-10-05)
History
SuccessorNvidia RTX PRO

Quadro was Nvidia's brand for graphics cards intended for use in workstations running professional computer-aided design (CAD), computer-generated imagery (CGI), digital content creation (DCC) applications, scientific calculations and machine learning from 2000 to 2020.

Quadro-branded graphics cards differed from the mainstream GeForce lines in that the Quadro cards included the use of ECC memory, larger GPU cache, and enhanced floating point precision. These are desirable properties when the cards are used for calculations which require greater reliability and precision compared to graphics rendering for video games.

The Nvidia Quadro product line directly competed with AMD's Radeon Pro (formerly FirePro/FireGL) line of professional workstation graphics cards.[1]

Nvidia has since moved away from the Quadro branding for new products, starting with the Turing architecture-based RTX 4000 released on November 13, 2018, and then phasing it out entirely with launch of the Ampere architecture-based RTX A6000 on October 5, 2020.[2] To indicate the upgrade to the Nvidia Ampere architecture for their graphics cards technology, Nvidia RTX is the product line being produced and developed moving forward for use in professional workstations. This branding lasted until the beginning of the Blackwell architecture era in 2025, when the workstation graphics card line was rebranded to RTX PRO in order to distinguish it further from the gaming-oriented GeForce RTX line.

History

[edit]
Quadro DIV Vpro VR3

The Quadro line of GPU cards emerged in an effort towards market segmentation by Nvidia.[citation needed] In introducing Quadro, Nvidia was able to charge a premium for essentially the same graphics hardware in professional markets, and direct resources to properly serve the needs of those markets.[dubiousdiscuss] To differentiate their offerings, Nvidia used driver software and firmware to selectively enable features vital to segments of the workstation market, such as high-performance anti-aliased lines and two-sided lighting,[3] in the Quadro product.[citation needed] These features were of little value to the gamers that Nvidia's products already sold to, but their lack prevented high-end customers from using the less expensive products. The Quadro line also received improved support through a certified driver program.[citation needed]

There are parallels between the market segmentation used to sell the Quadro line of products to workstation (DCC) markets and the Tesla line of products to engineering and HPC markets.

In a settlement of a patent infringement lawsuit between SGI and Nvidia, SGI acquired rights to speed-binned Nvidia graphics chips which they shipped under the VPro product label. These designs were completely separate from the SGI Odyssey based VPro products initially sold on their IRIX workstations which used a completely different bus. SGI's Nvidia-based VPro line included the VPro V3 (Geforce 256), VPro VR3 (Quadro), VPro V7 (Quadro2 MXR), and VPro VR7 (Quadro2 Pro).[4][5]

Quadro SDI

[edit]

Actual extra cards only for Quadro 4000 cards and higher:

  • SDI Capture:[6]
  • SDI Output:[7]

Quadro Plex

[edit]

Quadro Plex consists of a line of external servers for rendering videos. A Quadro Plex contains multiple Quadro FX video cards. A client computer connects to Quadro Plex (using PCI Express ×8 or ×16 interface card with interconnect cable) to initiate rendering.

Quadro SLI and Sync

[edit]
Three Nvidia Quadro P6000 in a server

Scalable Link Interface, or SLI, has been considered as the next generation of Plex. Originally used for the GeForce line of graphics cards, it is a multi-GPU technology that uses two or more video cards to produce a single output. SLI can improve Frame Rendering and FSAA.[8][9] Quadro SLI supports Mosaic technology for multiple displays using two cards in parallel and up to 8 possible monitors.[10] Most cards have an SLI bridge slot for up to four cards on one motherboard.[11] With Quadro Sync technology, cards can support up to a maximum of 16 possible monitors (using four cards in parallel).[12][13]

Nvidia has four types of SLI bridges:

  • Standard Bridge (400 MHz Pixel Clock[14] and 1 GB/s bandwidth[15])
  • LED Bridge (540 MHz Pixel Clock[16])
  • High-Bandwidth Bridge (650 MHz Pixel Clock[17])
  • PCI-e lanes only reserved for SLI

In both SLI and SYNC technologies, acceleration of scientific calculations is possible with CUDA and OpenCL.[18][19][20]

Quadro VCA

[edit]
A Nvidia Quadro K6000, released in 2013[21]

Nvidia supports SLI and supercomputing with its 8-GPU Visual Computing Appliance.[22] Nvidia Iray,[23][24] Chaosgroup V-Ray[25] and Nvidia OptiX[26] accelerate Raytracing for Maya, 3DS Max, Cinema4D, Rhinoceros and others. All software with CUDA or OpenCL, such as ANSYS, NASTRAN, ABAQUS, and OpenFoam, can benefit from VCA. The DGX-1 is available with 8 GP100 Cards.[27]

Quadro RTX

[edit]
Nvidia Quadro RTX 4000

The Quadro RTX series is based on the Turing microarchitecture, and features real-time raytracing.[28] This is accelerated by the use of new RT cores, which are designed to process quadtrees and spherical hierarchies, and speed up collision tests with individual triangles. The Turing microarchitecture debuted with the Quadro RTX series before the mainstream consumer GeForce RTX line.[29]

The raytracing performed by the RT cores can be used to produce reflections, refractions and shadows, replacing traditional raster techniques such as cube maps and depth maps. Instead of replacing rasterization entirely, however, the information gathered from ray-tracing can be used to augment the shading with information that is much more physically correct, especially regarding off-camera action.

Tensor cores further enhance the image produced by raytracing, and are used to de-noise a partially rendered image.[citation needed]

RTX is also the name of the development platform introduced for the Quadro RTX series. RTX leverages Microsoft's DXR, OptiX and Vulkan for access to raytracing.[30]

Turing is manufactured using TSMC's 12 nm FinFET fabrication process.[31] Quadro RTX also uses GDDR6 memory from Samsung Electronics.[32]

Video cards

[edit]

GeForce

[edit]

Many of the Quadro line of video cards use the same GPU cores as Nvidia's consumer-and-gaming-oriented GeForce brand of video cards. The cards that are nearly identical to the desktop cards can be modified[33] to identify themselves as the equivalent Quadro card to the operating system, allowing optimized drivers intended for the Quadro cards to be installed on the system. While this may not offer all of the performance of the equivalent Quadro card,[citation needed] it can improve performance in certain applications, but may require installing the MAXtreme driver for comparable speed.

The performance difference comes in the firmware controlling the card.[citation needed] Given the importance of speed in a game, a system used for gaming can shut down textures, shading, or rendering after only approximating a final output—in order to keep the overall frame rate high. The algorithms on a CAD-oriented card tend rather to complete all rendering operations, even if that introduces delays or variations in the timing, prioritising accuracy and rendering quality over speed. A Geforce card focuses more on texture fillrates and high framerates with lighting and sound, but Quadro cards prioritize wireframe rendering and object interactions.

Desktop AGP

[edit]
  • Architecture Celsius (NV1x): DirectX 7, OpenGL 1.2 (1.3)
  • Architecture Kelvin (NV2x): DirectX 8 (8.1), OpenGL 1.3 (1.5), Pixel Shader 1.1 (1.3)
  • Architecture Rankine (NV3x): DirectX 9.0a, OpenGL 1.5 (2.1), Shader Model 2.0a
  • Architecture Curie (NV4x): DirectX 9.0c, OpenGL 2.1, Shader Model 3.0
Quadro_AGP
Model
Launch Core Core clock
Memory clock
(effective)
Memory size
Memory type Memory
bandwidth
Interface AGP 3-pin
stereo
connector
Monitor Output Near GeForce Model Notes
Units MHz MHz MB GiB/s
GeForce 256-based
Quadro[34] 2000-01-01 NV10GL (Celsius) 135 166 32 128-bit SDR 2.66 No 1× VGA GeForce 256
GeForce 2-based
Quadro2 Pro[35] 2000-07-25 NV15GL 250 400 64 128-bit DDR 6.4 No DVI, VGA, S-Video GeForce 2 GTS
Quadro2 MXR[36] 2000-07-25 NV11GL 200 183 32 128-bit SDR 2.93 No 1× VGA GeForce 2 MX/400
Quadro2 MXR LP[37] 2000-07-25 NV11GL 200 183 32 128-bit SDR 2.93 4x No 1× VGA GeForce 2 MX/400
GeForce 3-based
Quadro DCC[38] 2001-03-14 NV20GL (Kelvin) 200 230 64 128-bit DDR 7.3 No DVI, VGA, S-Video GeForce 3/Ti
GeForce 4-based
Quadro4 380 XGL[39] 2002-11-12 NV18GL 275 513 64 128-bit DDR 8.2 No DVI, VGA, S-Video GeForce 4 MX 440 (AGP 8×)
Quadro4 500 XGL[40] 2002-02-19 NV17GL 250 166 128 128-bit SDR 2.66 4 x No DVI GeForce 4 MX 420
Quadro4 550 XGL[41] 2002-02-19 NV17GL 270 400 64 128-bit DDR 6.4 No DVI GeForce 4 MX 440
Quadro4 580 XGL[42] 2002-11-12 NV18GL 300 400 64 128-bit DDR 6.4 No DVI GeForce 4 MX 440 (AGP 8×)
Quadro4 700 XGL[43] 2002-02-19 NV25GL 275 550 64 128-bit DDR 7.2 No 2× DVI, S-Video GeForce 4 Ti 4200
Quadro4 750 XGL[44] 2002-02-19 NV25GL 275 550 128 128-bit DDR 7.2 Yes 2× DVI, S-Video GeForce 4 Ti 4400
Quadro4 780 XGL[45] 2002-11-12 NV28GL 275 550 128 128-bit DDR 8.8 4x Yes 2× DVI, S-Video GeForce 4 Ti 4200 (AGP 8×)
Quadro4 900 XGL[46] 2002-02-19 NV25GL 300 650 128 128-bit DDR 10.4 Yes 2× DVI, S-Video GeForce 4 Ti 4600
Quadro4 980 XGL[47] 2002-11-12 NV28GL 300 650 128 128-bit DDR 10.4 Yes 2× DVI, S-Video GeForce 4 Ti 4800
GeForce FX-based
Quadro FX 500[48] 2003-05-21 NV34GL (Rankine) 270 243 128 128-bit DDR 7.7 No DVI, VGA GeForce FX 5200
Quadro FX 700[49] 2004-03-17 NV31GL 275 275 128 128-bit DDR 8.8 No DVI, VGA GeForce FX 5600
Quadro FX 1000[50] 2003-01-21 NV30GL 300 600 128 128-bit GDDR2 9.6 Yes 2× DVI, S-Video GeForce FX 5800
Quadro FX 1100[51] 2004-04-01 NV36GL 425 325 128 128-bit DDR 10.4 Yes 2× DVI, S-Video GeForce FX 5700
Quadro FX 2000[52] 2003-01-21 NV30GL 400 400 128 128-bit GDDR2 12.8 Yes 2× DVI, S-Video GeForce FX 5800
Quadro FX 3000[53] 2003-07-22 NV35GL 400 425 256 256-bit DDR 27.2 Yes 2× DVI, S-Video GeForce FX 5900
Quadro FX 3000G[54] 2003-07-22 NV35GL 400 425 256 256-bit DDR 27.2 Yes 2× DL-DVI (via external controller), S-Video GeForce FX 5900 has external stereo frame sync connector
GeForce 6-based
Quadro FX 4000[55] 2004-04-01 NV40GL 375 500 256 256-bit GDDR3 32.0 Yes 2× Dual-link DVI, S-Video GeForce 6800 GT 2nd link using external TMDS transmitter
Quadro FX 4000 SDI[56] 2004-04-19 NV40GL (Curie) 375 500 256 256-bit GDDR3 32.0 Yes DVI, 2× SDI HDTV GeForce 6800 GT with digital and analog genlock (using external controllers)

Desktop PCI

[edit]
  • Architecture Rankine (NV3x): DirectX 9.0a, OpenGL 1.5 (2.1), Shader Model 2.0a
Quadro
PCI Model
Launch Core Core clock
(MHz)
Memory clock
(effective) (MHz)
Memory size
(MB)
Memory type Memory
bandwidth
(GB/s)
3-pin
stereo
connector
Monitor Output Near GeForce Model Notes
GeForce FX-based
Quadro FX 600 PCI[57] 2004-03-17 NV34GL (Rankine) 270 480 128 128-bit DDR 7.8 Yes 2× DVI, S-Video GeForce 5200 Ultra

Desktop PCI Express

[edit]

Quadro FX (without CUDA, OpenCL, or Vulkan)

[edit]
  • Rankine (NV3x): DirectX 9.0a, Shader Model 2.0a, OpenGL 2.1
  • Curie (NV4x, G7x): DirectX 9.0c, Shader Model 3.0, OpenGL 2.1
Quadro_FX
PCIe Model
Launch Core Core
clock
Memory clock
(eff.)
Memory size
(MB)
Memory type Memory
bandwidth
Pixel
Rate
Texture
Rate
Open GL CUDA
OpenCL
Vulkan Power
max.
3-pin
stereo
connector
Monitor Output Near GeForce Model Notes
Units MHz MHz MB GiB/s GP/s GT/s Watt
Quadro FX 330[58] 2004-06-28 NV35GL (Rankine) 250 200 (400) 64 64-bit DDR 3.2 0.5 1.0 2.1 No 21 No 1x DVI GeForce PCX 5300 Shader Model 2.0
Quadro FX 350[59] 2006-04-20 G72GL (Curie) 550 405 (810) 128 64-bit DDR2 6.48 1.1 2.2 21 No DVI, VGA GeForce 7300LE
Quadro FX 540[60] 2004-08-09 NV43GL 300 250 (500) 128 128-bit GDDR 8.8 2.4 2.4 35 No DVI, VGA, S-Video GeForce 6600LE
Quadro FX 550[61] 2006-04-20 NV43GL 360 400 (800) 128 128-bit GDDR3 12.8 2.88 2.88 25 No 2× dual-link DVI (max. only 2048×1536), S-Video
Quadro FX 560[62] 2006-04-20 G73GL 350 600 (1200) 128 128-bit GDDR3 19.2 2.80 4.2 30 No 2× DL-DVI, S-Video GeForce 7600
Quadro FX 1300[63] 2004-08-09 NV38GL 350 275 (550) 128 256-bit DDR 17.6 2.80 2.80 55 Yes 2× Single-Link DVI, S-Video GeForce PCX 5950
Quadro FX 1400[64] 2004-08-09 NV41GL 350 300 (600) 128 256-bit DDR 19.2 2.80 4.20 70 Yes 2× SL-DVI, VESA Stereo GeForce 6800
Quadro FX 1500[65] 2006-04-20 G71GL 325 625 (1250) 256 256-bit GDDR3 40.0 5.20 6.50 65 No 2× DL-DVI, S-Video GeForce 79xx (16 pixel, 6 vertex)
Quadro FX 3400[66] 2004-06-28 NV40 A1 (NV45GL) 350 450 (900) 256 256-bit GDDR3 28.8 4.60 4.60 101 Yes 2× DL-DVI, S-Video GeForce 6800
Quadro FX 3450[67] 2005-06-28 NV42GL (Curie) 425 500 (1000) 256 256-bit GDDR3 32.0 5.10 5.10 83 Yes 2× DL-DVI, S-Video GeForce 6800
Quadro FX 3500[68] 2006-05-22 G71GL 450 660 (1320) 256 256-bit GDDR3 42.2 7.20 9.00 80 Yes 2× DVI, S-Video GeForce 7900GS reduced Quadro FX 5500
Quadro FX 4000[55] 2004-04-01 NV42GL 425 500 (1000) 256 256-bit GDDR3 32.0 5.10 5.10 142 Yes 2× DVI, S-Video
Quadro FX 4000 SDI[56] 2004-04-19 NV42GL 425 500 (1000) 256 256-bit GDDR3 32.0 5.10 5.10 150 Yes DVI, 2× SDI HDTV 2× SDI HDTV outputs + digital and analog genlock (using external controllers)
Quadro FX 4400[69] 2005-06-28 NV40 A1 (NV45GL) 375 525 (1050) 512 256-bit GDDR3 33.6 5.50 5.50 83 Yes 2× DL-DVI, S-Video GeForce 6800 PCI-E Variant FX 4400G with Genlock[70]
Quadro FX 4500[71] 2005-06-28 G70GL 470 525 (1050) 512 256-bit GDDR3 33.6 6.88 10.3 109 Yes 2× DL-DVI, S-Video GeForce 7800GTX
Quadro FX 4500 SDI[72] 2006-02-11 G70GL 470 525 (1050) 512 256-bit GDDR3 33.6 6.88 10.3 116 Yes DL-DVI, 2× HDTV GeForce 7800GTX analog and digital genlock
Quadro FX 4500 X2[73] 2006-04-24 G70GL (2×) 500 600 (1200) 2× 512 2× 256-bit GDDR3 2×33.6 2× 8.0 2× 12.0 145 Yes 4x DL-DVI Quadro FX 4500 Two GPU units on the same card
Quadro FX 5500[74] 2006-04-20 G71GL 650 500 (1000) 1024 256-bit GDDR3 32.3 10.4 15.6 96 Yes 2× DL-DVI, S-Video GeForce 7900GTX
Quadro FX 5500 SDI[75] 2006-04-20 G71GL 650 500 (1000) 1024 256-bit GDDR3 32.3 10.4 15.6 104 Yes Quadro FX 5500 with SDI, genlock/frame lock support (via external hardware)

Quadro FX (with CUDA and OpenCL, but no Vulkan)

[edit]
  • Architecture Tesla (G80+, GT2xx) with OpenGL 3.3 and OpenCL 1.1
  • Tesla (G80+): DirectX 10, Shader Model 4.0, only Single Precision (FP32) available for CUDA and OpenCL
  • Tesla 2 (GT2xx): DirectX 10.1, Shader Model 4.1, Single Precision (FP32) available for CUDA and OpenCL (Double Precision (FP64) available for CUDA and OpenCL only for GT200 with CUDA Compute Capability 1.3 )
Quadro_FX
PCIe Model
Launch Core Core
clock
Memory clock
(eff.)
Memory size
(MB)
Memory type Memory
bandwidth
CUDA
cores
CUDA
Compute
Capability
Open GL Open CL Vulkan Power
max.
3-pin
stereo
connector
Monitor Output Near GeForce Model Notes
Units MHz MHz MB GiB/s Watt
Quadro FX 370[76] 2007-09-12 G84 (Tesla) 360 (720 Shader clock) 500 (1000) 256 64-bit GDDR2 6.4 16 1.1 3.3 1.1 No 35 No 1× Dual-link DVI-I, 1× single-link DVI Shader Model 4.0 DirectX 10
Quadro FX 370 LP[77] 2008-06-11 G86 540 (1300 Shader clock) 500 (1000) 256 64-bit GDDR2 8 8 1.1 1.1 25 No DMS-59 Low Profile
Quadro FX 380[78] 2009-03-30 G96 450 (1100 Shader clock) 350 (700) 256 128-bit GDDR3 22.4 16 1.1 1.1 34 No 2× Dual-link DVI-I GeForce 9400
Quadro FX 380 LP[79] 2009-12-01 GT218GL 550 (1375 Shader clock) 400 (800) 512 64-bit GDDR3 12.8 16 1.2 1.1 28 No 1× Dual-link DVI-I, 1× DisplayPort Low Profile
Quadro FX 570[80] 2007-09-12 G84GL 460 (920 Shader clock) 400 (800) 256 128-bit GDDR2 12.8 16 1.1 1.1 38 No 2× Dual-link DVI-I Shader Model 4.0, DirectX 10
Quadro FX 580[81] 2009-04-09 G96 450 (1125 Shader clock) 800 (1600) 512 128-bit GDDR3 25.6 32 1.1 1.1 40 No 1× Dual-link DVI-I, 2× DP (10-bits per color)[82] GeForce 9500
Quadro FX 1700[83] 2007-12-09 G84-875-A2 460 (920 Shader clock) 400 (800) 512 128-bit GDDR2 12.8 32 1.1 1.1 42 No 2× DL-DVI, S-Video (TV-Out) GeForce 8600GT Shader Model 4.0, DirectX 10.
Quadro FX 1800[84] 2009-03-30 G94 550 (1375 Shader clock) 800 (1600) 768 192-bit GDDR3 38.4 64 1.1 1.1 59 No 1× Dual-link DVI-I, 2× DP (10-bits per color)[85] GeForce 9600GT Shader Model 4.0, DirectX 10.
Quadro FX 3700[86] 2008-01-08 G92-875-A2 500 (1250 Shader clock) 800 (1600) 512 256-bit GDDR3 51.2 112 1.1 1.1 78 Yes 2× DVI, S-Video GeForce 8800GT PCI Express 2.0, Energy Star 4.0 compliant (<= 80W)
Quadro FX 3800[87] 2009-03-30 G200-835-B3 + NVIO2-A2 600 (1204 Shader clock) 800 (1600) 1024 256-bit GDDR3 51.2 192 1.3 1.1 107 Yes DVI, 2× DisplayPort (10bits per Color) GeForce GTX 260 Stereo requires an optional 3 pin S Bracket
Quadro FX 3800 SDI[88] 2009-03-30 GT200GL 600 (1204 Shader clock) 800 (1600) 1024 256-bit GDDR3 51.2 192 1.3 1.1 107 Yes DVI, 2× DisplayPort Quadro FX 3800 HD-SDI Ports
Quadro FX 4600[89] 2007-03-05 G80GL 500 (1200 Shader clock) 700 (1400) 768 384-bit GDDR3 67.2 112 1.0 1.1 134 Yes 2× DL-DVI, S-Video GeForce 8800GTS (G80) One 6-pin power connector
Quadro FX 4600 SDI[90][91] 2007-05-30 G80GL 500 (1200 Shader clock) 700 (1400) 768 384-bit GDDR3 67.2 112 1.0 1.1 154 Yes Quadro FX 4600 with SDI, genlock/frame lock support (via external hardware), One 6-pin power connector
Quadro FX 4700 X2[92] 2006-04-24 G92 600 (1350 Shader clock) 800 (1600) 2× 1024 2× 256-bit GDDR3 2× 51.2 2× 128 1.1 1.1 226 Yes 2× DL-DVI, S-Video GeForce 9800GX2 Two GPU units on the same card
Quadro FX 5600[93] 2007-03-05 G80-875-A2 + NVIO-1-A3 600 (1350 Shader clock) 800 (1600) 1536 384-bit GDDR3 76.8 128 1.0 1.1 (1.0 OS X) 171 Yes 2× DVI, S-Video GeForce 8800GTX Two 6-pin power connectors
Quadro FX 5600 SDI[94] 2007-03-05 G80GL 600 (1350 Shader clock) 800 (1600) 1536 384-bit GDDR3 76.8 128 1.0 1.1 (1.0 OS X) 171 Yes 2× DVI, S-Video Quadro FX 5600 Two 6-pin power connectors, HD-SDI Version
Quadro FX 4800[95] 2008-11-11 G200-850-B3 + NVIO2-A2 602 (1204 Shader clock) 800 (1600) 1536 384-bit GDDR3 77 192 1.3 1.1 (1.0 Mac OS X) 150 Yes DVI, 2× DP, S-Video 55 nm version of GeForce GTX 260 Quadro CX without Elemental Technologies' CS4 plug-in., SDI Version available
Quadro FX 4800 SDI[96][97] 2008-11-11 D10U-20 (GT200GL) 602 (1204 Shader clock) 800 (1600) 1536 384-bit GDDR3 77 192 1.3 1.1 (1.0 Mac OS X) 150 Yes DVI, 2× DP, S-Video, SDI FX 4800 HD-SDI
Quadro FX 5800[98] 2008-11-11 G200-875-B2 + NVIO2-A2 610 (1296 Shader clock) 800 (1600) 4096 512-bit GDDR3 102 240 1.3 1.1 189 Yes DVI, 2× DP, S-Video GeForce GTX 285 SDI Version available[96]
Quadro FX 5800 SDI[96][99] 2008-11-11 D10U-30 (GT200GL) 610 (1296 Shader clock) 800 (1600) 4096 512-bit GDDR3 102 240 1.3 1.1 189 Yes DVI, 2× DP, S-Video GeForce GTX 285 HD-SDI
Quadro CX[100] 2008-11-11 D10U-20 (GT200GL) 602 (1204 Shader clock) 800 (1600) 1536 384-bit GDDR3 76.8 192 1.3 1.1 150 Yes 1× DP, 1× DL-DVI, S-Video 55 nm GeForce GTX 260 optimised for Adobe Creative Suite 4, HD-SDI optional[97]
Quadro VX 200[101] 2008-01-08 G92-851-A2 450 (1125 Shader clock) 800 (1600) 512 GDDR3 51.2 96 1.1 1.1 78 No HDTV and 2× Dual-link DVI GeForce 8800GT optimised for Autodesk AutoCAD.

Quadro

[edit]
  • Architecture Fermi (GFxxx), Kepler (GKxxx), Maxwell (GMxxx), Pascal (GPxxx), Volta (GVxxx) (except Quadro 400 with Tesla 2)
  • All Cards with Display Port 1.1+ can support 10bit per Channel for OpenGL (HDR for Graphics Professional (Adobe Photoshop and more))
  • Vulkan 1.2 available with Driver Windows 456.38, Linux 455.23.04 for Kepler, Maxwell, Pascal, Volta[102]
  • All Kepler, Maxwell, Pascal, Volta and later can do OpenGL 4.6 with Driver 418+[103]
  • All Quadro can do OpenCL 1.1. Kepler can do OpenCL 1.2, Maxwell and later can do OpenCL 3.0
  • All can do Double Precision with Compute Capability 2.0 and higher (see CUDA)
Quadro
GPU
Launch Core Core
clock
Memory clock Memory size
(MB)
Memory type Memory
bandwidth
CUDA
cores
CUDA
Compute
Capability
DirectX Open GL Open CL Vulkan Power
max.
3-pin
stereo
connector
MonitorOutput Near GeForce Model Notes
Units MHz MHz MB GiB/s Watt
Quadro 400[104] 2011-04-05 GT216GL (40 nm) 450 (1125 Shader clock) 800 512 64-bit GDDR3 12.3 48 1.2 10.1 3.3 1.1 No 32 No  1× Dual-link DVI-I, 1× DP 1.1a, HDMI 1.3a (via adapter)[105] GeForce GT 220 GeForce 200 series Tesla-2-based
Quadro 600[106] 2010-12-13 GF108GL 640 800 1024 128-bit GDDR3 25.6 96 2.1 11.0
(11_0)
4.6 40 No 1×DL-DVI-I, 1× DisplayPort 1.1a, HDMI 1.3a (via adapter).[107] GeForce GT 430 Based on the GeForce 400 series Fermi-based
Quadro 2000[108] 2010-12-24 GF106GL 625 1300 1024 128-bit GDDR5 41.6 192 62 No 1× DL-DVI-I, 2× DP 1.1a, HDMI 1.3a (via adapter)[109] GeForce GTS 450 Fermi-based
Quadro 2000D[110] 2011-10-05 GF106GL 625 1300 1024 128-bit GDDR5 41.6 192 62 No 2× DL-DVI-I GeForce GTS 450 10 and 12 bit per each rgb Channel (10-bits internal)[111]
Quadro 4000 (SDI)[112] 2010-11-02 GF100GL 475 700 2048 256-bit GDDR5 89.6 256 2.0 142 Yes 1× DL-DVI-I, 2× DP 1.1a, HDMI 1.3a (via adapter)[113] ? HD-SDI optional[114][115]
Quadro 5000 (SDI)[116] 2011-02-23 GF100GL (Fermi) 513 750 2560 320-bit GDDR5 ECC 120 352 152 Yes 1× DL-DVI-I, 2× DP 1.1a, HDMI 1.3a (via adapter)[117] GeForce GTX 465/470 (cutdown) GeForce 400 series, HD-SDI optional[118]
Quadro 6000 (SDI)[119] 2010-12-10 GF100GL (Fermi) 574 750 6144 384-bit GDDR5 ECC 144 448 204 Yes 1×DL-DVI-I, 2× DP 1.1a, HDMI 1.3a (via adapter)[120] GeForce GTX 480 (cutdown) GeForce 400 series, HD-SDI optional[121]
Quadro 7000[122] 2012-05-12 GF110GL 650 925 6144 384-bit GDDR5 ECC 177.4 512 204 Yes 2× DP 1.1a, DVI, S-Video GeForce GTX 580 Fermi-based
Quadro Plex 7000[123] 2011-07-25 2× GF100GL 574 750 2× 6144 2× 384-bit GDDR5 ECC 2× 144 2× 512 600 Yes 4x DP 1.1a, 2× S-Video GeForce GTX 590 Based on two Quadro 6000.
Quadro 410[124][125] 2012-08-07 GK107GLM (28 nm)[126] 706 891 512 64-bit DDR3 14 192 3.0 12.0
(11_0)
1.2 1.2 38 No 1× Single-link DVI-I, 1× DP 1.2, HDMI 1.4 (via adapter)[127] GeForce GT 630 (Kepler) GeForce 600 series Kepler-based
Quadro K420[128] 2014-07-14 GK107GL 780 900 1024 128-bit GDDR3 29 192 41 No 1× DL-DVI, 1× DP 1.2 GeForce GT 630 (Kepler) Kepler-based[129]
Quadro K600[130] 2013-03-01 GK107GL 875 900 1024 128-bit GDDR3 29 192 41 No 1× DL-DVI-I, 1× DP 1.2 GeForce GT 630 (Kepler) Kepler-based[129]
Quadro K620[131] 2014-07-14 GM107GL 1000 900 2048 128-bit GDDR3 29 384 5.0 45 No 1× DL-DVI, 1× DP 1.2, GeForce GTX 745 (OEM) Maxwell-based[129]
Quadro K1200[132] 2015-01-28 GM107GL 1000 1250 4096 128-bit GDDR5 80 512 45 No 4x Mini-DP 1.2 GeForce GTX 750 Maxwell-based[129]
Quadro K2000[133] 2013-03-01 GK107GL 954 1000 2048 128-bit GDDR5 64 384 3.0 51 No 1× DL-DVI-I, 2× DP 1.2 GeForce GTX 650 Kepler-based[129]
Quadro K2000D[134] 2013-03-01 GK107GL 950 1000 2048 128-bit GDDR5 64 384 51 No 2× DL-DVI-I, 1× DP 1.2 GeForce GTX 650 Kepler-based[129]
Quadro K2200[135][136] 2014-07-22 GM107GL 1046 1250 4096 128-bit GDDR5 80 640 5.0 68 No 1× DL-DVI-I, 2× DP 1.2 GeForce GTX 750 Ti Maxwell-based[129]
Quadro K4000[137][138] 2013-03-01 GK106GL 800 1400 3072 192-bit GDDR5 134 768 3.0 80 Yes 1× DL-DVI-I, 2× DP1.2 GeForce GTX 650 Ti Boost Kepler-based,[129] HD-SDI optional with extra Card[139]
Quadro K4200[140][141] 2014-07-22 GK104-850-A2 780 1350 4096 256-bit GDDR5 173 1344 108 Yes 1× DL-DVI-I, 2× DP 1.2 GeForce GTX 670 Kepler-based,[129] HD-SDI optional
Quadro K5000[142] 2012-08-17 GK104GL 706 1350 4096 256-bit GDDR5 ECC 173 1536 122 Yes 2x DP 1.2 GeForce GTX 770/680 Kepler-based,[129][143] HD-SDI optional[144]
Quadro K5200[145][146] 2014-07-22 GK110B 650 1500 8192 256-bit GDDR5 ECC 192 2304 3.5 150 Yes 1× DL-DVI-I, 1× DL-DVI-D, 2× DP 1.2 GeForce GTX 780 Kepler-based, HD-SDI optional
Quadro K6000[147] 2013-07-23 GK110GL 700 1500 12288 384-bit GDDR5 ECC 288 2880 225 Yes 2× DP 1.2 GeForce GTX TITAN Black Kepler-based,[129] HD-SDI optional[148]
Quadro M2000[149] 2016-04-08 GM206-875 796–1163 1653 4096 128-bit GDDR5 105.8 768 5.2 12.0
(12_1)
3.0 1.3 75 No 4x DP 1.2 GeForce GTX 950 Maxwell-based
Quadro M4000[150] 2015-06-29 GM204-850 773 1502 8192 256-bit GDDR5 192.3 1664 120 Yes 4x DP 1.2 GeForce GTX 970 Maxwell-based
Quadro M5000[151] 2015-06-29 GM204-875 861–1038 1653 8192 256-bit GDDR5 ECC 211.6 2048 150 Yes 4x DP 1.2 GeForce GTX 980 Maxwell-based
Quadro M6000[152] 2015-03-15 GM200-876-A1 988–1114 1653 12288 384-bit GDDR5 ECC 317.4 3072 250 Yes 4x DP 1.2 GeForce GTX TITAN X Maxwell-based
Quadro M6000 24 GB[153] 2016-03-05 GM200-880 988–1114 1653 24576 384-bit GDDR5 ECC 317.4 3072 250 Yes 4x DP 1.2 GeForce GTX TITAN X Maxwell-based
Quadro P400 2017-02-06 GP107-825 1228–1252 1003 2048 64-bit GDDR5 32.1 256 6.1 30 No 3x mini-DP 1.4 GeForce GT 1030 Pascal-based[129]
Quadro P600 2017-02-06 GP107-850 1329–1557 1003 2048 128-bit GDDR5 64.2 384 40 No 4x mini-DP 1.4 GeForce GT 1030 Pascal-based[129]
Quadro P620 2018-02-01 GP107-855 1266–1354 1252 2048 128-bit GDDR5 80.13 512 40 No 4x mini-DP 1.4 GeForce GTX 1050 Pascal-based[129]
Quadro P1000 2017-02-06 GP107-860 1266–1481 1253 4096 128-bit GDDR5 80.19 640 47 No 4x mini-DP 1.4 GeForce GTX 1050 Pascal-based[129]
Quadro P2000 2017-02-06 GP106-875-K1 1076–1480 1752 5120 160-bit GDDR5 140.2 1024 75 No 4x DP 1.4 GeForce GTX 1060 Pascal-based[129]
Quadro P2200 2019-06-10 GP106-880-K1 1000–1493 1253 5120 160-bit GDDR5X 200.5 1280 75 No 4x DP 1.4 GeForce GTX 1060 Pascal-based[129]
Quadro P4000 2017-02-06 GP104-850 1202–1480 1901 8192 256-bit GDDR5 243.3 1792 105 Yes DVI, 4x DP 1.4 GeForce GTX 1070 Pascal-based[129]
Quadro P5000 2016-10-01 GP104-875 1607–1733 1127 16384 256-bit GDDR5X 288.5 2560 180 Yes DVI, 4x DP 1.4 GeForce GTX 1080 Pascal-based[129][154]
Quadro P6000 2016-10-01 GP102-875 1506–1645 1127 24576 384-bit GDDR5X 432.8 3840 250 Yes DVI, 4x DP 1.4 Nvidia TITAN Xp Pascal-based[129][154]
Quadro GP100[155][156] 2017-02-06 GP100-876 1304–1442 715 16384 4096-bit HBM2 732.2 3584 6.0 235 Yes Dual-Link DVI, 4x DP 1.4 Nvidia TITAN Xp Pascal-based[129][154]
Quadro GV100[157] 2018-03-27 GV100-875 1132–1627 848 32768 4096-bit HBM2 868.4 5120 7.0 250 Yes 4x DP 1.4 Nvidia TITAN V Volta-based[158]

1 Nvidia Quadro 342.01 WHQL: support of OpenGL 3.3 and OpenCL 1.1 for legacy Tesla microarchitecture Quadros.[159]

2 Nvidia Quadro 377.83 WHQL: support of OpenGL 4.5, OpenCL 1.1 for legacy Fermi microarchitecture Quadros.[160]

3 Nvidia Quadro 474.72 WHQL: support of OpenGL 4.6, OpenCL 1.2, Vulkan 1.2 for legacy Kepler microarchitecture Quadros.[161]

4 Nvidia Quadro 552.22 WHQL: support of OpenGL 4.6, OpenCL 3.0, Vulkan 1.3 for Maxwell, Pascal & Volta microarchitecture Quadros.[162]

5 OpenCL 1.1 is available for Tesla-Chips,[163] OpenCL 1.0 for some Cards with G8x, G9x and GT200 by MAC OS X[164]

Quadro RTX/T/RTX

[edit]
  • Turing (TU10x) microarchitecture
  • Ampere (GA10x) microarchitecture
  • Ada Lovelace (AD10x) microarchitecture
  • Quadro naming dropped beginning with Ampere-based GPUs and later Turing-based GPUs (T400, T600, T1000)[165][166]
  • Quadro RTX/RTX series GPUs have tensor cores and hardware support for real-time ray tracing
Quadro
GPU
Launch Core Core
clock
Memory clock Memory size
(GB)
Memory type Memory
bandwidth
CUDA
cores
Tensor
cores
RT
cores
Half
precision
Single
precision
Double
precision
CUDA
Compute Capability
DirectX OpenGL OpenCL Vulkan Power
max.
3-pin
stereo
connector
Display

Output

Near GeForce Model Notes
Units MHz MHz GB GiB/s TFLOPS TFLOPS GFLOPS Watt
T400[167][168] 2021-05-06 TU117-8??-A1 420–1425 1250 2/4 64-bit GDDR6 80 384 N/A N/A 2.189 1.094 34.20 7.5 12.0 (12_1) 4.6 3.0 1.3 40 No 3x mDP 1.4 GeForce GTX 1630 (Cut-down) Turing-based
T600[167][169] 2021-04-12 TU117-8??-A1 735–1395 4 128-bit GDDR6 160 640 N/A N/A 3.418 1.709 53.40 40 No 4x mDP 1.4 GeForce GTX 1650 (Cut-down) Turing-based
T1000[167][170] 2021-05-06 TU117-8??-A1 1065–1395 4/8 128-bit GDDR6 160 896 N/A N/A 5 2.5 78.12 50 No GeForce GTX 1650 Turing-based
Quadro RTX 4000[171] 2018-11-13 TU104-850 1005–1545 1625 8 256-bit GDDR6 416 2304 288 36 14.2 7.1 221.8 12.0 (12_2) 160 Yes 3x DP 1.4, Virtual Link GeForce RTX 2080 (mobile) Turing-based[32]
Quadro RTX 5000[171] TU104-875 1620–1815 1750 16 (32 with NVLink) 256-bit GDDR6 448 3072 384 48 22.3[172] 11.2[172] 350[172] 265 Yes 4x DP 1.4, Virtual Link GeForce RTX 2080 Super Turing-based[32]
Quadro RTX 6000[171][173] TU102-875 1440–1770[172] 24 (48 with NVLink) 384-bit GDDR6 672 4608 576 72 32.6 16.3[172] 509.8[172] 295 Yes Nvidia TITAN RTX Turing-based[32]
Quadro RTX 8000[171] TU102-875 1395–1770[172] 48 (96 with NVLink) 384-bit GDDR6 672 4608 576 72 32.6[172] 16.3[172] 509.8[172] 295 Yes Nvidia TITAN RTX Turing-based[32]
RTX A400[174][175] 2024-04-16 GA107-??? 727–1762 1500 4 64-bit GDDR6 96 768 24 6 2.706[176] 2.706[176] 42.29[176] 8.6 50 4x mDP 1.4 GeForce RTX 3050 (Cut-down) Ampere-based
RTX A1000[174][177] GA107-??? 727–1462 8 128-bit GDDR6 192 2304 72 18 6.737[178] 6.737[178] 105.3[178] 50 GeForce RTX 3050 (Cut-down) Ampere-based
RTX A2000[179] 2021-08-10 GA106-850 562–1200 6 192-bit GDDR6 288 3328 104 26 7.987 7.987 249.615 70 No GeForce RTX 3060 Ampere-based[165][166]
2021-11-23 12
RTX A4000[180] 2021-04-12 GA104-875 735–1560[181] 1750[181] 16 256-bit GDDR6 448 6144 192 48 19.170[181] 19.170[181] 599.078[181] 140 Yes 4x DP 1.4 GeForce RTX 3070 Ti Ampere-based[165][166]
RTX A4500[182] 2021-11-23 GA102-825 1050–1650 2000 20 (40 with NVLink 3.0) 320-bit GDDR6 640 7168 224 56 23.656 23.656 739.247 200 Yes GeForce RTX 3080 Ampere-based[165][166]
RTX A5000[183] 2021-04-12 GA102-850 1170–1695 24 (48 with NVLink 3.0) 384-bit GDDR6 768 8192 256 64 27.772 27.772 867.895 230 Yes GeForce RTX 3080 Ampere-based[165][166]
RTX A5500[184] 2022-03-22 GA102-860 1080–1665 24 (48 with NVLink 3.0) 384-bit GDDR6 768 10240 320 80 34.101 34.101 1065.667 230 Yes GeForce RTX 3080 Ti Ampere-based[165][166]
RTX A6000[185][186] 2020-10-05 GA102-875 1410–1800 48 (96 with NVLink 3.0) 384-bit GDDR6 768 10752 336 84 38.709[187] 38.709 1209.677 300 Yes GeForce RTX 3090 Ampere-based[165][166]
RTX 2000 Ada Generation[188][189] 2024-02-12 AD107-??? 1620–2130 16 128-bit GDDR6 224 2816 88 22 12[190] 12[190] 187.4[190] 8.9 70 4x mDP 1.4a GeForce RTX 4060 (Cut-down) Ada Lovelace-based
RTX 4000 SFF Ada Generation[191] 2023-03-21 AD104-??? 1290–1565 1750 20 160-bit GDDR6 280 6144 192 48 19.17[192] 19.17 299.5 70 GeForce RTX 4070 (Cut-down) Ada Lovelace-based
RTX 4000 Ada Generation[193] 2023-08-09 AD104-??? 1500– 2175 2250 20 160-bit GDDR6 360 6144 192 48 26.73[194] 26.73 417.6 130 4x DP 1.4a GeForce RTX 4070 Ada Lovelace-based
RTX 4500 Ada Generation[195] AD104-??? 2070– 2580 24 192-bit GDDR6 432 7680 240 60 39.63[196] 39.63 619.2 210 GeForce RTX 4070 Ti Ada Lovelace-based
RTX 5000 Ada Generation[197] AD102-850-KAB-A1 1155– 2550 32 256-bit GDDR6 576 12800 400 100 65.28[198] 65.28 1020 250 GeForce RTX 4080 Ada Lovelace-based
RTX 5880 Ada Generation[199][200] 2024-01-05 AD102-??? 975–2460 48 384-bit GDDR6 960 14080 440 110 69.27[201] 69.27[201] 1082[201] 285 GeForce RTX 4080 Ti Ada Lovelace-based
RTX 6000 Ada Generation[202] 2022-12-03 AD102-870 915–2505 2500 18176 568 142 91.06[203] 91.06 1423 300 Yes GeForce RTX 4090 Ada Lovelace-based

[204] [205] [206] [207]

For business NVS

[edit]

The Nvidia Quadro NVS graphics processing units (GPUs) provide business graphics solutions[buzzword] for manufacturers of small, medium, and enterprise-level business workstations. The Nvidia Quadro NVS desktop solutions[buzzword] enable multi-display graphics for businesses such as financial traders.

  • Architecture Celsius (NV1x): DirectX 7, OpenGL 1.2 (1.3)
  • Architecture Kelvin (NV2x): DirectX 8 (8.1), OpenGL 1.3 (1.5), Pixel Shader 1.1 (1.3)
  • Architecture Rankine (NV3x): DirectX 9.0a, OpenGL 1.5 (2.1), Shader Model 2.0a
  • Architecture Curie (NV4x): DirectX 9.0c, OpenGL 2.1, Shader Model 3.0
  • Architecture Tesla (G80+): DirectX 10.0, OpenGL 3.3, Shader Model 4.0, CUDA 1.0 or 1.1, OpenCL 1.1
  • Architecture Tesla 2 (GT2xx): DirectX 10.1, OpenGL 3.3, Shader Model 4.1, CUDA 1.2 or 1.3, OpenCL 1.1
  • Architecture Fermi (GFxxx): DirectX 11.0, OpenGL 4.6, Shader Model 5.0, CUDA 2.x, OpenCL 1.1
  • Architecture Kepler (GKxxx): DirectX 11.2, OpenGL 4.6, Shader Model 5.0, CUDA 3.x, OpenCL 1.2, Vulkan 1.2
  • Architecture Maxwell 1 (GM1xx): DirectX 12.0, OpenGL 4.6, Shader Model 5.0, CUDA 5.0, OpenCL 3.0, Vulkan 1.3
Quadro
NVS model
Launch Max. resolution
(digital)
Interface Display connectors Displays
supported
Power
consumption
Core Notes
Units Watt
Quadro NVS 50[208] 2005-05-31 1600×1200 AGP 8× / PCI DVI-I, S-Video 1 10 NV18 (Celsius) OpenGL 1.3, DirectX 8.0
Quadro4 NVS 100[209][210] 2003-12-22 2048×1536 AGP 4× / PCI 1x DVI-I, VGA, S-Video 2 10 NV17(A3)
Quadro NVS 200[211] 2003-12-22 1280×1024 AGP 4× / PCI LFH-60 2 11 NV17
Quadro NVS 210s[212] 2003-12-22 1720×1200 Onboard (nForce 430) DVI + VGA ? 11 MCP51 no PureVideoHD, only SD
Quadro NVS 280 (PCI)[213] 2003-10-28 1600×1200 PCI DMS-59 2 12 NV34 A1
Quadro NVS 280 (AGP, PCIe)[214][215] 2004-05-25 1600×1200 PCI-E ×16 / AGP 8× DMS-59 2 12 NV34 A1
Quadro NVS 285[216] 2006-06-06 1920×1200 PCI-Express ×1/×16 DMS-59 2 13/18 NV44
Quadro NVS 290[217] 2007-10-04 1920×1200 PCI-Express ×1/×16 DMS-59 2 21 G86 Tesla based
Quadro NVS 295[218] 2009-05-07 2560×1600 PCI-Express ×1/×16 2× DisplayPort or 2× DVI-D 2 23 G98 Tesla based
Quadro NVS 400[219] 2004-07-16 1280×1024 PCI 2× DMS-59 4 18 2× NV17 A3
Quadro NVS 420[220] 2009-01-20 2560×1600 PCI-Express ×1/×16 VHDCI (4× DisplayPort or 4× DVI-D) 4 40 2× G98
Quadro NVS 440[221] 2009-03-09 1920×1200 PCI-Express ×1/×16 2× DMS-59 4 31 2× NV43
Quadro NVS 450[222] 2008-11-11 2560×1600 PCI-Express ×16 4× DisplayPort 4 35 2× G98
NVS 300[223] 2011-01-08 2560×1600 PCI-Express ×1/×16 DMS-59 2 17.5 GT218 Tesla 2 based
NVS 310[224] 2012-06-26 2560×1600 PCI-Express ×16 2× DisplayPort 2 19.5 GF119 Fermi based (GeForce 510)
NVS 315[225] 2013-03-10 2560×1600 PCI-Express ×16 DMS-59 2 19.5 GF119
NVS 510[226] 2012-10-23 3840×2160 PCI-Express 2.0 ×16 4× Mini-DisplayPort 4 35 GK107 Kepler-based
NVS 810[227] 2015-11-04 4096×2160 (8@30 Hz, 4@60 Hz) PCI-Express 3.0 ×16 8× Mini-DisplayPort 8 68 2× GM107 Maxwell based

Mobile applications

[edit]

Quadro FX M (without Vulkan)

[edit]
  • Architecture Rankine (NV3x), Curie (NV4x, G7x) and Tesla (G80+, GT2xx)
Quadro FX M Model Launch YYYY-MM-dd Core Fab Bus
interface
Core
clock
Shader
clock
Memory
clock
Config core Fillrate Memory Bus
width
Processing
Power (GFLOPs)
API support TDP
Pixel Texture Size Band-
with
Type Single
precision
Double
precision
DirectX OpenGL CUDA
Compute
Capability
OpenCL Vulkan
Units nm MHz MHz MHz GP/s GT/s MB GB/s bit Watt
Quadro FX Go 540[228] 2004-08-09 NV43GL 110 MXM-II 300 300 550 4:8:8:8 2.4 2.4 128 8.8 GDDR3 128 No 9.0c 2.1 No No 42
Quadro FX Go 700[229] 2003-06-25 NV31GLM 130 AGP 4x 295 295 590 3:4:4:4 1.18 1.18 128 9.44 DDR3 128 9.0a 2.1 unknown
Quadro FX Go 1000[230] 2005-02-25 NV36GLM 130 AGP 4x 295 295 570 3:4:4:4 1.18 1.18 128 9.12 DDR3 128 9.0a 2.1 unknown
Quadro FX Go 1400[231] 2005-02-25 NV41GLM 110 MXM-III 275 275 590 5:8:8:8 2.2 2.2 256 18.88 DDR3 256 9.0c 2.1 unknown
Quadro FX 350M[232] 2006-03-13 G72GLM (Curie) 90 PCI-E 1.0 ×16 450 450 900 3:4:4:2 0.9 1.8 256 14.4 GDDR3 128 9.0c 2.1 15
Quadro FX 360M[233] 2007-05-09 G86GLM (Tesla) 80 PCI-E 1.0 ×16 400 800 1200 16:8:4:2 1.6 3.2 256 9.6 GDDR2 64 25.6 10 3.3 1.1 1.1 17
Quadro FX 370M[234] 2008-08-15 G98GLM (Tesla) 65 PCI-E 2.0 ×16 550 1400 1200 8:4:4:1 2.2 2.2 256 9.6 GDDR3 64 22.4 10 3.3 1.1 1.1 20
Quadro FX 380M[235] 2010-01-07 GT218GLM (Tesla 2) 40 PCI-E 2.0 ×16 625 1530 1600 16:8:4:2 2.4 4.8 512 12.6 GDDR3 64 47.0 No, only GT200 1/8 of SP 10.1 3.3 1.2 1.1 25
Quadro FX 550M[236] 2006-03-13 G73GLM (Curie) 90 PCI-E 1.0 ×16 480 480 1000 5:12:12:8 4 6 512 19.2 GDDR3 128 No 9.0c 2.1 No 35
Quadro FX 560M[237] 2006-03-13 G73GLM (Curie) 90 PCI-E 1.0 ×16 500 500 1200 5:12:12:8 4 6 512 19.2 GDDR3 128 9.0c 2.1 35
Quadro FX 570M[238] 2007-06-01 G84GLM (Tesla) 80 PCI-E 1.0 ×16 475 950 1400 32:16:8:2 3.8 7.6 512 22.4 GDDR3 128 60.8 10 3.3 1.1 1.1 45
Quadro FX 770M[239] 2008-08-14 G96GLM (Tesla) 65 PCI-E 2.0 ×16 500 1250 1600 32:16:8:2 4 8 512 25.6 GDDR3 128 80 10 3.3 1.1 1.1 35
Quadro FX 880M[240] 2010-01-07 GT216GLM (Tesla 2) 40 PCI-E 2.0 ×16 550 1210 1600 48:16:8:2 4.4 8.8 1024 25.6 GDDR3 128 116 No, only GT200 1/8 of SP 10.1 3.3 1.2 1.1 35
Quadro FX 1500M[241] 2006-04-18 G71GLM 90 PCI-E 1.0 ×16 375 375 1000 8:24:24:16 6 9 512 32 GDDR3 256 No 9.0c 2.1 No 45
Quadro FX 1600M[242] 2007-06-01 G84GLM 80 PCI-E 1.0 ×16 625 1250 1600 32:16:8:2 5 10 512 25.6 GDDR3 128 80 10 3.3 1.1 1.1 50
Quadro FX 1700M[243] 2008-10-01 G96GLM 65 PCI-E 2.0 ×16 625 1550 1600 32:16:8:2 5 10 512 25.6 GDDR3 128 99.2 10 3.3 1.1 1.1 50
Quadro FX 1800M[244] 2009-06-15 GT215GLM 40 PCI-E 2.0 ×16 450 1080 1600
2200
72:24:8:3 3.6 10.8 1024 25.6
35.2
GDDR3
GDDR5
128 162 No, only GT200 1/8 of SP 10.1 3.3 1.2 1.1 45
Quadro FX 2500M[245] 2005-09-29 G71GLM 90 PCI-E 1.0 ×16 500 500 1200 8:24:24:16 8 12 512 38.4 GDDR3 256 No 9.0c 2.1 No 45
Quadro FX 2700M[246] 2008-08-14 G94GLM 65 PCI-E 2.0 ×16 530 1325 1600 48:24:16:3 8.48 12.72 512 51.2 GDDR3 256 127 10 3.3 1.1 1.1 65
Quadro FX 2800M[247] 2009-12-01 G92GLM 55 PCI-E 2.0 ×16 500 1250 2000 96:48:16:6 8 16 1024 64 GDDR3 256 288 10 3.3 1.1 1.1 75
Quadro FX 3500M[248] 2007-03-01 G71GLM 90 PCI-E 1.0 ×16 575 575 1200 8:24:24:16 9.2 13.8 512 38.4 GDDR3 256 9.0c 2.1 No 45
Quadro FX 3600M[249] 2008-02-23 G92GLM 65 PCI-E 2.0 ×16 500 1250 1600 64:32:16:4
96:48:16:6
8
8
16
24
1024 51.2 GDDR3 256 160
240
10 3.3 1.1 1.1 70
Quadro FX 3700M[250] 2008-08-14 G92GLM 65 PCI-E 2.0 ×16 550 1375 1600 128:64:16:8 8.8 35.2 1024 51.2 GDDR3 256 352 10 3.3 1.1 1.1 75
Quadro FX 3800M[251] 2008-08-14 G92GLM 55 PCI-E 2.0 ×16 675 1688 2000 128:64:16:8 10.8 43.2 1024 64 GDDR3 256 422 10 3.3 1.1 1.1 100

Quadro NVS M

[edit]
  • Architecture Curie (NV4x, G7x): DirectX 9.0c, OpenGL 2.1, Shader Model 3.0
  • Architecture Tesla (G80+): DirectX 10.0, OpenGL 3.3, Shader Model 4.0, CUDA 1.0 or 1.1, OpenCL 1.1
  • Architecture Tesla 2 (GT2xx): DirectX 10.1, OpenGL 3.3, Shader Model 4.1, CUDA 1.2 or 1.3, OpenCL 1.1
  • Architecture Fermi (GFxxx): DirectX 11.0, OpenGL 4.6, Shader Model 5.0, CUDA 2.x, OpenCL 1.1
  • Architecture Kepler (GKxxx): DirectX 11.2, OpenGL 4.6, Shader Model 5.0, CUDA 3.x, OpenCL 1.2, Vulkan 1.1
  • Architecture Maxwell 1 (GM1xx): DirectX 12.0, OpenGL 4.6, Shader Model 5.0, CUDA 5.0, OpenCL 1.2, Vulkan 1.1
Quadro NVS Mobile Launch Core Core clock
speed
Memory
clock speed
Memory size Memory
type
Memory
bandwidth
CUDA
cores
Max.
power
Interface 3-pin
stereo
connector
Near GeForce Model Notes
Units MHz MHz MB GB/s Watt
Quadro NVS 110M[252] 2006-06-01 G72M 300 600 128 / 256 / 512 64-bit DDR 4.80 no 10 PCIe 1.0 ×16 Varies GeForce Go 7300 Curie-based
Quadro NVS 120M[253] 2006-06-01 G72GLM 450 700 128 / 256 / 512 64-bit DDR2 11.2 no 10 MXM-III Varies Quadro FX 350M/GeForce Go 7400 Curie-based
Quadro NVS 130M[254] 2007-05-09 G86M 400 400 128 / 256 64-bit 6.4 16 10 PCIe 2.0 ×16 Varies GeForce 8400M Tesla-based
Quadro NVS 135M[255] 2007-05-09 G86M 400 600 128 / 256 64-bit 9.55 16 10 PCIe 2.0 ×16 Varies GeForce 8400M GS Tesla-based
Quadro NVS 140M[256] 2007-05-09 G86M 400 700 128 / 256 / 512 64-bit 9.6 16 10 PCIe 2.0 ×16 Varies GeForce 8500M GT Tesla-based
Quadro NVS 150M[257] 2008-08-15 G98M 530 700 128 / 256 64-bit 11.22 8 10 MXM-I Varies GeForce 9200M GS Tesla-based
Quadro NVS 160M[258] 2008-08-15 G98M 580 700 256 64-bit 11.22 8 12 MXM-I Varies GeForce 9300M GS Tesla-based
NVS 2100M[259] 2010-01-07 GT218 535 1600 512 64-bit GDDR3 12.8 16 12 PCIe 2.0 ×16 Varies GeForce 305M Tesla 2-based
Quadro NVS 300M[260] 2006-05-24 G73GLM 450 500 128 / 256 / 512 128-bit GDDR3 16.16 no 16 PCIe 1.0 ×16 Varies GeForce Go 7600 Curie-based
Quadro NVS 320M[261] 2007-06-09 G84M 575 700 128 / 256 / 512 128-bit GDDR3 22.55 32 20 MXM-HE Varies GeForce 8700M Tesla-based
NVS 3100M[262] 2010-01-07 GT218 600 1600 512 64-bit GDDR3 12.8 16 14 PCIe 2.0 ×16 Varies GeForce G210M/310M Tesla 2-based
NVS 4200M[263] 2011-02-11 GF119 810 1600 1024 64-bit DDR3 12.8 48 25 MXM Varies GeForce 410M Fermi-based
Quadro NVS 510M[264] 2006-08-21 G71GLM 500 600 256 / 512 256-bit GDDR3 38.4 no 35 PCI Express Varies GeForce Go 7900 GTX Curie-based
Quadro NVS 5100M[265] 2010-01-07 GT216 550 1600 1024 128-bit GDDR3 25.6 48 35 MXM-A 3.0 Varies GeForce GT 330M/Quadro FX 880M Tesla 2-based
NVS 5200M[266] 2012-06-01 GF117 625 1800 1024 64-bit DDR3 14.4 96 25 MXM Varies GeForce 710M/GT 620M Fermi-based
NVS 5400M[267] 2012-06-01 GF108 660 1800 1024 128-bit DDR3 28.8 96 35 MXM Varies GeForce GT 630M/Quadro 1000M Fermi-based

Quadro M

[edit]
Nvidia Quadro 3000M on a Mobile PCI Express Module
  • Architecture Fermi, Kepler,[268] Maxwell,[269] Pascal
  • Fermi, Kepler, Maxwell, and Pascal support OpenGL 4.6 with driver versions 381+ on Linux or 390+ on Windows[103]
  • All can do Double Precision with compute Capability 1.3 and higher
  • Vulkan 1.2 on Kepler and 1.3 on Maxwell and later
  • Quadro 5000M has 2048 MB of VRAM, of which 1792 MB is usable with ECC enabled.
Model Launch Core Fab Bus
interface
Core
clock
Shader
clock
Memory
clock effective
Config core Fillrate Memory Bus
width
Processing
Power (GFLOPs)
API support TDP
Pixel Texture Size Band-
with
Type Single
precision
Double
precision
DirectX OpenGL CUDA
Compute
Capability
OpenCL Vulkan
Units nm MHz MHz MHz GP/s GT/s MB GB/s bit Watt
Quadro 1000M[270][271] 2011-01-13 GF108GLM 40 PCI-E 2.0 ×16 700 1400 1800 96:16:4:4 5.6 11.2 2048 28.8 DDR3 128 269 1/12 of SP 11 4.6 2.1 1.1 No 45
Quadro 2000M[272] 2011-01-13 GF106GLM 40 PCI-E 2.0 ×16 550 1100 1800 192:32:16:4 4.4 17.6 2048 28.8 DDR3 128 422 1/12 of SP 11 4.6 2.1 1.1 No 55
Quadro 3000M[273] 2011-02-22 GF104GLM 40 MXM-B (3.0) 450 900 2500 240:40:32:5 4.5 18 2048 80 GDDR5 256 432 1/12 of SP 11 4.6 2.1 1.1 No 75
Quadro 4000M[274] 2011-02-22 GF104GLM 40 PCI-E 2.0 ×16 475 950 2400 336:56:32:7 6.65 26.6 2048 80 GDDR5 256 638 1/12 of SP 11 4.6 2.1 1.1 No 100
Quadro 5000M[275] 2010-07-27 GF100GLM 40 PCI-E 2.0 ×16 405 810 2400 320:40:32:10 8.10 16.2 2048 76.8 GDDR5 256 518 1/2 of SP 11 4.6 2.0 1.1 No 100
Quadro 5010M[276] 2011-02-22 GF110GLM 40 PCI-E 2.0 ×16 450 900 2600 384:48:32:12 10.8 21.6 4096 83.2 GDDR5 256 691 11 4.6 2.0 100
Quadro K500M[277] 2012-06-01 GK107 28 MXM-A (3.0) 850 850 1800 192:16:8:1 3.4 13.6 1024 12.8 DDR3 64 326 1/24 of SP 11.2 4.6 3.0 1.2 1.2 35
Quadro K510M[278] 2013-07-23 GK208 28 MXM-A (3.0) 846 846 2400 192:16:8:1 3.4 13.5 1024 19.2 GDDR5 64 325 11.2 4.6 3.5 30
Quadro K610M[279] 2013-07-23 GK208 28 PCI-E 2.0 ×8 980 980 2600 192:16:8:1 3.9 15.7 1024 20.8 GDDR5 64 376 11.2 4.6 3.5 30
Quadro K1000M[280] 2012-06-01 GK107GL 28 PCI-E 3.0 ×16 850 850 1800 192:16:16:1 3.4 13.6 2048 28.8 DDR3 128 326 1/24 of SP 11.2 4.6 3.0 1.2 1.2 45
Quadro K1100M[281] 2013-07-23 GK107GL 28 PCI-E 3.0 ×16 706 706 2800 384:32:16:2 5.65 22.6 2048 44.8 GDDR5 128 542 11.2 4.6 3.0 45
Quadro K2000M[282] 2012-06-01 GK107 28 mxm-a 745 900 1800 384:32:16:2 5.96 23.84 2048 28.8 DDR3 128 572 1/24 of SP 11.2 4.6 3.0 1.2 1.2 55
Quadro K2100M[283] 2013-07-23 GK106 28 PCI-E 3.0 ×16 667 750 3000 576:48:16:3 8.0 32.0 2048 48.0 GDDR5 128 768 11.2 4.6 3.0 55
Quadro K3000M[284] 2012-06-01 GK104 28 PCI-E 3.0 ×16 654 654 2800 576:48:32:3 7.85 31.4 2048 89.6 GDDR5 256 753 1/24 of SP 11.2 4.6 3.0 1.2 1.2 75
Quadro K3100M[285] 2013-07-23 GK104 28 PCI-E 3.0 ×16 683 683 3200 768:64:32:4 11.3 45.2 4096 102.4 GDDR5 256 1084 11.2 4.6 3.0 75
Quadro K4000M[286] 2012-06-01 GK104 28 PCI-E 3.0 ×16 600 600 2800 960:80:32:5 12.0 48.1 4096 89.6 GDDR5 256 1154 1/24 of SP 11.2 4.6 3.0 1.2 1.2 100
Quadro K4100M[287] 2013-07-23 GK104 28 PCI-E 3.0 ×16 706 706 3200 1152:96:32:6 16.9 67.8 4096 102.4 GDDR5 256 1627 11.2 4.6 3.0 100
Quadro K5000M[288] 2012-08-07 GK104 28 PCI-E 3.0 ×16 706 706 3000 1344:112:32:7 16.8 67.3 4096 96.0 GDDR5 256 1615 1/24 of SP 11.2 4.6 3.0 1.2 1.2 100
Quadro K5100M[289] 2013-07-23 GK104 28 PCI-E 3.0 ×16 771 771 3600 1536:128:32:8 24.7 98.7 8192 115.2 GDDR5 256 2368 11.2 4.6 3.0 100
Quadro M500M[290] 2016-04-27 GM108 28 PCI-E 3.0 ×16 1029 1124 1800 384:32:16:2 8.2 16.5 2048 14.4 DDR3 64 729 1/32 of SP 12.0 4.6 5.0 3.0 1.3 30
Quadro M520[291][292] 2017-01-11 GM108 28 MXM-A (3.0) 965 1176 5000 384:16:8:2 9.4 18.8 1024 40 GDDR5 64 840 12.0 4.6 5.0 25
Quadro M600M[293] 2015-08-18 GM107 28 PCI-E 3.0 ×16 1029 1124 5000 384:32:16:2 8.2 16.5 2048 80 GDDR5 128 790 12.0 4.6 5.0 30
Quadro M620[291][294] 2017-01-11 GM107 28 MXM-A (3.0) 756 1018 5012 512:32:16:4 16.3 32.6 2048 80.2 GDDR5 128 1042 12.0 4.6 5.0 30
Quadro M1000M[295] 2015-08-18 GM107 28 PCI-E 3.0 ×16 1000 1250 5000 512:32:16:4 15.9 31.8 4096 80.2 GDDR5 128 1017 12.0 4.6 5.0 55
Quadro M1200[291][296] 2017-01-11 GM107 28 MXM-A (3.0) 991 1148 5012 640:40:16:5 18.4 45.9 4096 80.2 GDDR5 128 1469 12.0 4.6 5.0 45
Quadro M2000M[297] 2015-12-03 GM107 28 MXM-A (3.0) 1029 1029 5000 640:40:32:5 32.9 41.2 4096 80 GDDR5 128 1317 12.0 4.6 5.0 55
Quadro M2200[291][298] 2017-01-11 GM206 28 MXM-A (3.0) 695 1037 5508 1024:64:32:8 33.2 66.3 4096 88.1 GDDR5 128 2124 12.1 4.6 5.2 55
Quadro M3000M[299] 2015-08-18 GM204 28 PCI-E 3.0 ×16 540 1080 5000 1024:64:32:8 17.3 34.6 4096 160 GDDR5 256 1106 12.1 4.6 5.2 55
Quadro M4000M[300] 2015-08-18 GM204 28 PCI-E 3.0 ×16 975 1250 5000 1280:80:64:10 62.4 78.0 4096 160.4 GDDR5 256 2496 12.1 4.6 5.2 100
Quadro M5000M[301] 2015-08-18 GM204 28 PCI-E 3.0 ×16 975 1250 5000 1536:96:64:12 62.4 93.6 8192 160 GDDR5 256 2995 12.1 4.6 5.2 100
Quadro M5500[302] 2016-04-08 GM204 28 PCI-E 3.0 ×16 861 1140 6606 2048:128:64:16 73 145.9 8192 211 GDDR5 256 4669 12.1 4.6 5.2 150
Quadro P500[303][304] 2018-01-05 GP108 14 1455 5012 256:16:16 24.3 24.3 2048 40 GDDR5 64 777 12.1 4.6 6.1 18
Quadro P600[305][304] 2017-02-07 GP107 14 1430 5012 384:24:16 24.9 37.4 4096 80 GDDR5 128 1196 12.1 4.6 6.1 25
Quadro P1000[306][304] 2017-02-07 GP107 14 1303 6008 512:32:16 23.9 47.8 4096 96 GDDR5 128 1529 12.1 4.6 6.1 40
Quadro P2000[307][304] 2017-02-06 GP107 14 1557 6008 768:64:32 51.4 77.1 4096 96 GDDR5 128 2468 12.1 4.6 6.1 50
Quadro P3000[308][291] 2017-01-11 GP104 16 MXM-B 3.0 ×16 1210 1210 7012 1280:80:32:10 38.7 96.8 6144 168 GDDR5 192 3098 12.1 4.6 6.1 75
Quadro P3200[309][304] 2018-02-21 GP104 16 1328 7012 1792:112:64 98.8 172.8 6144 168 GDDR5 192 5530 12.1 4.6 6.1 75
Quadro P4000[310][291] 2017-01-11 GP104 16 MXM-B 3.0 ×16 1227 1227 7012 1792:112:64:14 78.5 137.4 8192 192.3 GDDR5 256 4398 12.1 4.6 6.1 100
Quadro P4200[311][304] 2018-02-21 GP104 16 MXM-B 3.0 ×16 1227 1227 6008 2304:144:64:18 105.4 237.2 8192 192.3 GDDR5 256 7589 12.1 4.6 6.1 100
Quadro P5000[312][291] 2017-01-11 GP104 16 MXM-B 3.0 ×16 1513 1513 6012 2048:128:64:16 96.8 193.7 16384 192.3 GDDR5 256 6197 12.1 4.6 6.1 100
Quadro P5200[313][304] 2018-02-21 GP104 16 MXM-B 3.0 ×16 1556 1556 7200 2560:160:64:20 111.7 279.4 16384 230.4 GDDR5 256 8940 12.1 4.6 6.1 150

Quadro/Quadro RTX/RTX Mobile

[edit]
  • Turing (TU10x) microarchitecture
  • Ampere (GA10x) microarchitecture
  • Ada Lovelace (AD10x) microarchitecture
  • Quadro naming dropped beginning with Ampere-based GPUs and later Turing-based GPUs (T500, T600, T1200)[314]
  • Quadro RTX/RTX series GPUs have tensor cores and hardware support for realtime ray tracing
Model Launch Core Core
clock
Memory
clock
Memory CUDA
cores
Tensor cores RT cores Processing power API support Power
max.
Size Bandwidth Type Bus
width
Single
precision
Double
precision
CUDA
Compute
Capability
DirectX OpenGL OpenCL Vulkan
MHz MHz GiB GiB/s bit TFLOPS TFLOPS Watt
Quadro T1000 Mobile[315] 2019-05-27 TU117 1395 2001 4 128.1 GDDR5 128 896 n/a n/a 2.607 1/32 of SP 7.5 12.0 (12_1) 4.6 3.0 1.3 50
Quadro T2000 Mobile[316] 1575 GDDR6 1024 n/a n/a 3.656 60
Quadro RTX 3000 Mobile[314][317] TU106 1380 1750 6 336 192 2304 240 30 6.4[a] 12.0 (12_2) 80
Quadro RTX 4000 Mobile[314][318] TU104 1560 8 448 256 2560 320 40 8.0 110
Quadro RTX 5000 Mobile[314][319] 1770 16 3072 384 48 9.4[a] 110
Quadro RTX 6000 Mobile[314][320] 2019-09-04 TU102 1455 24 672 384 4608 576 72 14.9[a] 250
RTX A2000 Mobile[314][321] 2021-04-12 GA106 1358 1375 4 192 128 2560 80 20 9.3[a] 8.6 95
RTX A3000 Mobile[314][322] GA104 1560 6 264 192 4096 128 32 12.8 130
RTX A4000 Mobile[314][323] 1680 1500 8 384 256 5120 160 40 17.8[a] 140
RTX A5000 Mobile[314][324] 1575 1750 16 448 6144 192 48 21.7[a] 230
RTX 500 Ada Mobile 2024-02-26 AD107 2025 2000 4 128 64 2048 64 16 9.2 ? 60
RTX 1000 Ada Mobile 6 192 96 2560 80 20 12.1 140
RTX 2000 Ada Mobile 2023-03-21 2115 8 256 128 3072 96 24 14.5
RTX 3000 Ada Mobile AD106 1695 8 ECC 4608 144 36 19.9
RTX 3500 Ada Mobile AD104 1545 2250 12 ECC 432 192 5120 160 40 23.0
RTX 4000 Ada Mobile 1665 7424 232 58 33.6 175
RTX 5000 Ada Mobile AD103 2115 16 ECC 576 256 9728 304 76 42.6

NVENC and NVDEC support matrix

[edit]

Hardware accelerated video encoding (via NVENC) and decoding (via NVDEC) is supported on NVIDIA Quadro products with Kepler, Maxwell, Pascal, Turing, Ampere and Ada generation GPUs.[325][326] Fermi based GPUs support decoding only.[327]

NVENC – Encoding
Board Family Chip Server/
Desktop/
Mobile
# of
NVENC/chip
Max # of
concurrent sessions
H.264 (AVCHD) YUV 4:2:0 H.264 (AVCHD) YUV 4:4:4 H.264 (AVCHD) Lossless H.265 (HEVC) 4K YUV 4:2:0 H.265 (HEVC) 4K YUV 4:4:4 H.265 (HEVC) 4K Lossless H.265 (HEVC) 8k HEVC B Frame support
Quadro K420 / K600 Kepler GK107 D 1 3 Yes No No No No No No No
Quadro K2000 / K2000D Kepler GK107 D 1 Unrestricted Yes No No No No No No No
Quadro K2100 > K5100 Kepler GK106 M 1 Unrestricted Yes No No No No No No No
Quadro K4000 Kepler GK106 D 1 Unrestricted Yes No No No No No No No
Quadro K100 > K2000 + K5100 Kepler GK104 M 1 Unrestricted Yes No No No No No No No
Quadro K4200 / K5000 Kepler GK104 D 1 Unrestricted Yes No No No No No No No
Quadro K5200 / K6000 Kepler (2nd Gen) GK110B D 1 Unrestricted Yes No No No No No No No
Quadro K620 / K1200 Maxwell (1st Gen) GM107 D 1 3 Yes Yes Yes No No No No No
Quadro K2200 Maxwell (1st Gen) GM107 D 1 Unrestricted Yes Yes Yes No No No No No
Quadro M500 / M520 Maxwell (1st Gen) GM108 M 0 n/a No No No No No No No No
Quadro M600 / M620 Maxwell (1st Gen) GM107 M 1 Unrestricted Yes Yes Yes No No No No No
Quadro M1000 / M1200 / M2000 Maxwell (1st Gen) GM107 M 1 Unrestricted Yes Yes Yes No No No No No
Quadro M2000 Maxwell (GM206) GM206 D 1 Unrestricted Yes Yes Yes Yes No No No No
Quadro M2200 Maxwell (GM206) GM206 M 1 Unrestricted Yes Yes Yes Yes No No No No
Quadro M3000 / M4000 / M5500 Maxwell (2nd Gen) GM204 M 2 Unrestricted Yes Yes Yes Yes No No No No
Quadro M4000 / M5000 Maxwell (2nd Gen) GM204 D 2 Unrestricted Yes Yes Yes Yes No No No No
Quadro M6000 Maxwell (2nd Gen) GM200 D 2 Unrestricted Yes Yes Yes Yes No No No No
Quadro P500 / P520 Pascal GP108 M 1 3 No No No No No No No No
Quadro P400 Pascal GP107 D 1 3 Yes Yes Yes Yes Yes Yes Yes No
Quadro P600 / P620/ P1000 Pascal GP107 D/M 1 3 Yes Yes Yes Yes Yes Yes Yes No
Quadro P2000 Pascal GP107 M 1 Unrestricted Yes Yes Yes Yes Yes Yes Yes No
Quadro P2000 / P2200 Pascal GP106 D 1 Unrestricted Yes Yes Yes Yes Yes Yes Yes No
Quadro P3200 / P4200 / P5200 Pascal GP104 M 2 Unrestricted Yes Yes Yes Yes Yes Yes Yes No
Quadro P4000 Pascal GP104 D 1 Unrestricted Yes Yes Yes Yes Yes Yes Yes No
Quadro P5000 Pascal GP104 D 2 Unrestricted Yes Yes Yes Yes Yes Yes Yes No
Quadro P6000 Pascal GP102 D 2 Unrestricted Yes Yes Yes Yes Yes Yes Yes No
Quadro GP100 Pascal GP100 D 3 Unrestricted Yes Yes Yes Yes Yes Yes No No
Quadro GV100 Volta GV100 D 3 Unrestricted Yes Yes Yes Yes Yes Yes Yes No
Quadro T1000 Turing TU117 M 1 3 Yes Yes Yes Yes Yes Yes Yes Yes
Quadro T2000 Turing TU117 M 1 Unrestricted Yes Yes Yes Yes Yes Yes Yes Yes
Quadro RTX 3000 Turing TU106 M 1 Unrestricted Yes Yes Yes Yes Yes Yes Yes Yes
Quadro RTX 5000/RTX 4000 Turing TU104 D/M 1 Unrestricted Yes Yes Yes Yes Yes Yes Yes Yes
Quadro RTX 6000/RTX 8000 Turing TU102 D 1 Unrestricted Yes Yes Yes Yes Yes Yes Yes Yes
NVDEC – Decoding
Board Family Chip Desktop/
Mobile/
Server
# Of Chips # Of NVDEC
/Chip
Total # of NDEC MPEG-1 MPEG-2 VC-1 VP8 VP9 H.264
(AVCHD)
H.265 (HEVC) 4:2:0 H.265 (HEVC) 4:4:4
8 bit 10 bit 12 bit 8 bit 10 bit 12 bit 8 bit 10 bit 12 bit
Quadro K420 / K600 Kepler GK107 D 1 1 1 Yes Yes Yes No No No No Yes No No No No No No
Quadro K2000 / K2000D Kepler GK107 D 1 1 1 Yes Yes Yes No No No No Yes No No No No No No
Quadro K2100 > K5100 Kepler GK106 M 1 1 1 Yes Yes Yes No No No No Yes No No No No No No
Quadro K4000 Kepler GK106 D 1 1 1 Yes Yes Yes No No No No Yes No No No No No No
Quadro K100 > K2000 + K5100 Kepler GK104 M 1 1 1 Yes Yes Yes No No No No Yes No No No No No No
Quadro K4200 / K5000 Kepler GK104 D 1 1 1 Yes Yes Yes No No No No Yes No No No No No No
Quadro K5200 / K6000 Kepler (2nd Gen) GK110B D 1 1 1 Yes Yes Yes No No No No Yes No No No No No No
Quadro K620 / K1200 Maxwell (1st Gen) GM107 D 1 1 1 Yes Yes Yes No No No No Yes No No No No No No
Quadro K2200 Maxwell (1st Gen) GM107 D 1 1 1 Yes Yes Yes No No No No Yes No No No No No No
Quadro M500 / M520 Maxwell (1st Gen) GM108 M 1 0 0 No No No No No No No No No No No No No No
Quadro M600 / M620 Maxwell (1st Gen) GM107 M 1 1 1 Yes Yes Yes No No No No Yes No No No No No No
Quadro M1000 / M1200 / M2000 Maxwell (1st Gen) GM107 M 1 1 1 Yes Yes Yes No No No No Yes No No No No No No
Quadro M2000 Maxwell (GM206) GM206 D 1 1 1 Yes Yes Yes Yes Yes No No Yes Yes Yes No No No No
Quadro M2200 Maxwell (GM206) GM206 M 1 1 1 Yes Yes Yes Yes Yes No No Yes Yes Yes No No No No
Quadro M3000 / M4000 / M5500 Maxwell (2nd Gen) GM204 M 1 1 1 Yes Yes Yes Yes No No No Yes No No No No No No
Quadro M4000 / M5000 Maxwell (2nd Gen) GM204 D 1 1 1 Yes Yes Yes Yes No No No Yes No No No No No No
Quadro M6000 Maxwell (2nd Gen) GM200 D 1 1 1 Yes Yes Yes Yes No No No Yes No No No No No No
Quadro P500 / P520 Pascal GP108 M 0 0 0 No No No No No No No No No No No No No No
Quadro P400 Pascal GP107 D 1 1 1 Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes No No No
Quadro P600 / P620/ P1000 Pascal GP107 D/M 1 1 1 Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes No No No
Quadro P2000 Pascal GP107 M 1 1 1 Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes No No No
Quadro P2000 / P2200 Pascal GP106 D 1 1 1 Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes No No No
Quadro P3200 / P4200 / P5200 Pascal GP104 M 1 1 1 Yes Yes Yes Yes Yes No No Yes Yes Yes Yes No No No
Quadro P4000 / P5000 Pascal GP104 D 1 1 1 Yes Yes Yes Yes Yes No No Yes Yes Yes Yes No No No
Quadro P6000 Pascal GP102 D 1 1 1 Yes Yes Yes No Yes Yes Yes Yes Yes Yes Yes No No No
Quadro GP100 Pascal GP100 D 1 1 1 Yes Yes Yes Yes Yes No No Yes Yes Yes Yes No No No
Quadro GV100 Volta GV100 D 1 1 1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes No No No
Quadro T1000 / T2000 Turing TU117 M 1 1 1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quadro RTX 3000 Turing TU106 M 1 3 3 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quadro RTX 4000/RTX 5000 Turing TU104 D/M 1 2 2 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Quadro RTX 6000/RTX 8000 Turing TU102 D 1 1 1 Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Driver and SDK Software

[edit]

Quadro/RTX drivers

[edit]
  • Curie-Architecture Last drivers see Driver Portal of Nvidia[328] (End-of-Life)
  • Tesla-Architecture (G80+, GT2xx) in Legacy Mode Quadro Driver 340: OpenGL 3.3, OpenCL 1.1, DirectX 10.0/10.1[159] (End-of-Life)
  • Fermi (GFxxx): OpenCL 1.1, OpenGL 4.5, some OpenGL 2016 Features with Quadro Driver 375,[160] in legacy mode with version 392.68 (End-of-Life)
  • Kepler (GKxxx): OpenCL 1.2, OpenGL 4.6, Vulkan 1.2 with RTX Enterprise/Quadro Driver 470[161] (End-of-Life)[329]
  • Maxwell (GMxxx): OpenCL 3.0, OpenGL 4.6, Vulkan 1.3 with RTX Enterprise/Quadro Driver 550+[162]
  • Pascal (GPxxx): OpenCL 3.0, OpenGL 4.6, Vulkan 1.3 with RTX Enterprise/Quadro driver 550+[162]
  • Volta (GVxxx): OpenCL 3.0, OpenGL 4.6, Vulkan 1.3 with RTX Enterprise/Quadro driver 550+[162]
  • Turing (TUxxx): OpenCL 3.0, OpenGL 4.6, Vulkan 1.3 with RTX Enterprise/Quadro driver 550+[162]
  • Ampere (GAxxx): OpenCL 3.0, OpenGL 4.6, Vulkan 1.3 with RTX Enterprise/Quadro driver 550+[162]
  • Ada Lovelace (ADxxx): OpenCL 3.0, OpenGL 4.6, Vulkan 1.3 with RTX Enterprise/Quadro driver 550+[162]

CUDA

[edit]
  • Tesla Architecture and later

Supported CUDA Level of GPU and Card.[330]

  • CUDA SDK 6.5 support for Compute Capability 1.0 – 5.x (Tesla, Fermi, Kepler, Maxwell) Last Version with support for Tesla-Architecture with Compute Capability 1.x
  • CUDA SDK 7.5 support for Compute Capability 2.0 – 5.x (Fermi, Kepler, Maxwell)
  • CUDA SDK 8.0 support for Compute Capability 2.0 – 6.x (Fermi, Kepler, Maxwell, Pascal) Last version with support for compute capability 2.x (Fermi)
  • CUDA SDK 9.0/9.1/9.2 support for Compute Capability 3.0 – 7.2 (Kepler, Maxwell, Pascal, Volta)
  • CUDA SDK 10.0/10.1/10.2 support for Compute Capability 3.0 – 7.5 (Kepler, Maxwell, Pascal, Volta, Turing) Last version with support for compute capability 3.x (Kepler).
  • CUDA SDK 11.0/11.1/11.2/11.3/11.4/11.5/11.6/11.7 support for Compute Capability 3.5 – 8.9 (Kepler(GK110, GK208, GK210 only), Maxwell, Pascal, Volta, Turing, Ampere, Ada Lovelace)
  • CUDA SDK 11.8 support for Compute Capability 3.5 – 8.9 (Kepler(GK110, GK208, GK210 only), Maxwell, Pascal, Volta, Turing, Ampere, Ada Lovelace)
  • CUDA SDK 12.0 support for Compute Capability 5.0 – 8.9 (Maxwell, Pascal, Volta, Turing, Ampere, Ada Lovelace)

See also

[edit]

Notes

[edit]

References

[edit]
[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
from Grokipedia
Quadro is a brand of professional graphics processing units (GPUs) developed by Corporation, specifically designed for in workstations used for applications such as (CAD), (CGI), scientific visualization, 3D modeling, and media production. Introduced in 1999, the Quadro line quickly established itself as a cornerstone for professional visual computing, offering optimized drivers certified for industry-standard software from vendors like , , and , which ensured stability and precision in demanding workflows. Over its more than two decades of prominence, Quadro GPUs were renowned for features including support for error-correcting code ( to prevent in critical computations, memory configurations up to 96 GB of GDDR7 in the latest RTX PRO models, and capabilities for driving multiple high-resolution displays simultaneously, such as up to four 5K monitors. In 2018, NVIDIA advanced the Quadro portfolio with the introduction of Quadro RTX GPUs based on the Turing architecture, incorporating dedicated ray-tracing cores for real-time photorealistic rendering and tensor cores for accelerating tasks like inference. By 2020, phased out the Quadro branding entirely, transitioning professional GPUs to the unified lineup, including models like the RTX A6000 and RTX A40, which continue to support enterprise-grade features while integrating seamlessly with 's platform and Omniverse collaborative tools. Quadro's legacy endures in legacy systems and through ongoing driver support via NVIDIA's enterprise branches, enabling continued use in specialized environments like medical imaging, aerospace engineering, and film visual effects, where reliability and scalability are paramount.

Overview

Introduction

Quadro is NVIDIA's brand for a line of professional workstation graphics processing units (GPUs) designed primarily for applications in (CAD), digital content creation (DCC), scientific visualization, and . Launched in November 1999 as the world's first dedicated workstation GPU, Quadro marked NVIDIA's entry into the professional graphics market, building on its consumer RIVA architectures to address demands for reliable, high-precision rendering in professional workflows. Unlike consumer-oriented GPUs, which prioritize gaming performance and frame rates, Quadro products are optimized for long-term stability, error-free operation, and computational accuracy, supported by enterprise-grade drivers that undergo rigorous testing for professional software compatibility. These drivers, known as long-life branches, ensure minimal interruptions and are certified by independent software vendors (ISVs) for seamless integration with tools like , , and . Over its evolution, Quadro progressed through successive architectures, starting from early RIVA-based designs in the late 1990s, advancing to Kepler and Maxwell in the , and reaching Turing in followed by in , which introduced enhanced ray tracing and AI acceleration for professional tasks. Key differentiators include support for error-correcting code ( to prevent data corruption in critical simulations, scalable multi-GPU configurations via technologies like for handling massive datasets, and broad ISV certifications that validate performance across industries. In 2025, amid the shift to the , rebranded the professional lineup to RTX PRO, continuing Quadro's legacy with GPUs optimized for AI-driven workflows and real-time rendering.

Market Positioning and Applications

NVIDIA Quadro graphics cards were primarily targeted at professional users in , , media and entertainment, and scientific research sectors. These included engineers and architects utilizing software such as and Revit for CAD workflows, media professionals employing Maya and Adobe Suite for and , and scientists leveraging simulation tools for data visualization and analysis. Key applications for Quadro encompassed and rendering in design pipelines, (VR) and (AR) development for immersive simulations, for precise diagnostics, and AI training in professional environments requiring certified . These use cases demanded reliable performance in multi-threaded tasks, where Quadro's optimizations ensured seamless integration with industry-standard software. Quadro differentiated from consumer lines through extended driver support cycles of up to 10 years, (ISV) certifications for validated performance in professional applications, and specialized features like Quadro Sync for in multi-display setups. These attributes prioritized stability and reliability over raw gaming speed, reducing crashes in critical production environments. In the workstation GPU market, Quadro (and its RTX successor) held dominant share through 2025, powering systems from partners like Dell Precision and HP Z-series workstations, which integrated Quadro for optimized professional deployments. High-VRAM Blackwell cards like the RTX PRO 6000 have seen strong rental demand in cloud environments, highlighting their appeal for AI workloads requiring massive memory capacity. This positioning solidified NVIDIA's leadership in high-end visualization and compute segments.

History

Origins and Early Development

launched the Quadro line in November 1999 as its entry into the professional market, positioning it as the world's first dedicated GPU. This move marked a strategic expansion beyond consumer-oriented products like the series, targeting the growing demand for high-performance in professional environments. The initial Quadro cards were derived from the NV10 processor, originally developed for the , but optimized with a higher core clock speed of 135 MHz to better suit workloads. The primary motivations for Quadro's development stemmed from the need to address specific requirements in professional computing, such as reliable acceleration and enhanced stability for (CAD) applications. At the time, professionals in fields like and relied on certified hardware to ensure compatibility and precision in software like and , where consumer GPUs often fell short due to driver inconsistencies. NVIDIA aimed to capture this segment by providing hardware tailored for and operating systems, with initial drivers optimized for these enterprise environments to minimize crashes and support multi-monitor setups common in workstations. The first Quadro products were available in PCI and AGP interfaces, featuring 32 MB of SDRAM memory connected via a 128-bit bus, which provided sufficient bandwidth for early professional rendering tasks. These cards emphasized driver-level optimizations over raw gaming performance, including support for extended display modes and precise color reproduction essential for design workflows. Priced around $1,000 for the base model, they were marketed to workstation builders like and HP. Early adoption faced stiff competition from established players like 3dfx's Voodoo series and ATI's FireGL cards, which also targeted users with similar acceleration features. To differentiate, NVIDIA focused heavily on obtaining () certifications for key applications, ensuring Quadro's reliability in certified workstations and building trust in the market. This emphasis helped Quadro gain traction despite the competitive landscape.

Key Milestones and Architectural Shifts

The G80 era marked a pivotal shift in NVIDIA's Quadro lineup with the introduction of the unified shader architecture in 2006, enabling dynamic allocation of processing resources across geometry, vertex, and pixel shading tasks for enhanced efficiency in professional workloads. This architecture debuted in the Quadro FX 4600, released in March 2007, which featured 96 unified shaders and 768 MB of GDDR3 memory, supporting advanced visualization in CAD and digital content creation applications. A key innovation was the integration of (Compute Unified Device Architecture), allowing general-purpose computing on GPUs for the first time in professional cards, as confirmed in NVIDIA's initial CUDA programming guide that explicitly supported the Quadro FX 4600 and 5600 models. These advancements were showcased at NVIDIA's GPU Technology Conference (GTC), establishing annual events as a cornerstone for revealing architectural evolutions in the Quadro series. From the Fermi architecture in 2010 to Kepler in 2013, Quadro cards standardized error-correcting code ( to ensure for mission-critical simulations and large-scale datasets in and scientific . The Quadro 6000, launched in 2010 under Fermi, exemplified this with 6 GB of GDDR5 and 448 CUDA cores, delivering 144 GB/s bandwidth for handling complex models without corruption risks. Kepler's refinements in 2013 further optimized power efficiency and parallel processing, building on Fermi's foundations while expanding support for double-precision computations essential for professional simulations. GTC keynotes during this period highlighted these reliability enhancements, positioning Quadro as indispensable for high-fidelity professional graphics. The Maxwell and Pascal eras from 2014 to 2017 emphasized power efficiency and immersive technologies, with Maxwell's Quadro M series reducing thermal overhead while maintaining performance for mobile and desktop workstations. Pascal's Quadro P series, introduced in 2016, amplified these gains through advanced 16 nm process nodes and up to 70% better compared to predecessors, enabling sustained operation in dense multi-GPU setups. A notable addition was VRWorks, 's suite for development, integrated into P-series cards to support photorealistic rendering and professional VR workflows like architectural walkthroughs. These developments were prominently announced at GTC 2015 and 2016, underscoring Quadro's role in emerging VR and simulation markets. Volta and Turing architectures from 2018 to 2020 introduced specialized hardware for AI and ray tracing, transforming Quadro into a platform for real-time professional rendering. The Quadro RTX 8000, based on Turing and released in August 2018, incorporated 72 RT cores for hardware-accelerated real-time ray tracing, enabling physically accurate lighting, shadows, and reflections in and media applications at interactive frame rates. With 48 GB of GDDR6 memory and 576 Tensor cores, it facilitated AI-driven denoising and upscaling for complex scenes, marking a leap in for professionals. GTC 2018 and announcements emphasized these cores' impact on creative pipelines. The Ampere architecture, spanning 2021 to 2024, shifted focus toward AI acceleration in the NVIDIA RTX A series, with enhanced third-generation Tensor cores optimizing deep learning tasks like model training and inference in professional environments. The RTX A6000, launched in October 2020 but widely adopted in the Ampere era, featured 48 GB of GDDR6 ECC memory, 336 Tensor cores, and 10,752 CUDA cores for scalable AI workflows in data science and visualization. Integration of NVLink bridges allowed memory pooling up to 96 GB across two cards, boosting scalability for large-scale simulations and AI rendering. Annual GTC events, such as 2021's Ampere reveal, highlighted these AI emphases, solidifying Quadro's evolution toward hybrid graphics-compute solutions before its rebranding.

Rebranding and Legacy Status

In early 2025, announced the rebranding of its professional workstation lineup from the RTX series to RTX PRO, aligning with the introduction of the Blackwell , including workstation models such as the RTX PRO 6000. This transition was officially unveiled on March 18, 2025, marking the latest evolution in professional GPU branding after the Quadro name was phased out in 2020. The rebranding aimed to streamline NVIDIA's product nomenclature by unifying professional offerings under the RTX PRO banner, consistent with the consumer GeForce RTX series, while highlighting ongoing advancements in ray tracing and AI capabilities across both segments. As part of the shift, Quadro drivers were integrated into the broader NVIDIA RTX Enterprise driver ecosystem, ensuring seamless compatibility for professional workflows. Legacy Quadro cards continue to receive support through RTX Enterprise drivers and partner-maintained solutions, with security support until October 2028 for select models to maintain stability in enterprise environments. The RTX PRO series succeeds the prior professional lineup, such as the RTX 6000 Ada Generation, with models like the RTX PRO 6000 Blackwell Workstation Edition. The RTX PRO 6000 offers double the memory capacity (96 GB GDDR7 with ECC vs. 48 GB GDDR6 with ECC), higher memory bandwidth (~1.6–1.8 TB/s vs. ~960 GB/s), more CUDA cores (24,064 vs. 18,176), advanced 5th-gen Tensor Cores vs. 4th-gen, 4th-gen RT Cores vs. 3rd-gen, higher power consumption (600 W vs. 300 W), PCIe 5.0 x16 vs. PCIe 4.0 x16 interface, and improved performance in AI, rendering, and simulation workloads; both are dual-slot form factor for professional use. It retains key professional optimizations such as certified drivers for CAD, , and rendering applications.

Core Technologies

Multi-GPU Configurations

Quadro SLI, a variant of NVIDIA's , was introduced in 2004 alongside the Quadro FX series, such as the Quadro FX 4400, to enhance performance in environments. This connects multiple PCI Express-based Quadro GPUs via a high-speed bridge, enabling frame rendering mode that splits graphical workloads across cards for improved throughput in applications. Primarily designed for rendering farms and complex tasks, Quadro SLI supports scalability in certified software like CAD and visualization tools, where it can deliver up to nearly double the performance of a single GPU in optimized scenarios. From the Pascal architecture onward, integrated , a high-bandwidth GPU interconnect, into Quadro GPUs to facilitate more efficient multi-GPU scaling beyond traditional SLI limitations. enables direct GPU-to-GPU communication, allowing configurations of up to two Quadro RTX GPUs in setups for demanding compute tasks. In Quadro RTX models like the RTX 6000 and RTX 8000, bridges provide bidirectional bandwidth of up to 100 GB/s, doubling effective memory capacity—for instance, from 48 GB to 96 GB in a two-way setup—and accelerating data transfer for memory-intensive workloads. These multi-GPU configurations are particularly suited to large-scale simulations in scientific and high-fidelity VR rendering, where unified pools and low-latency interconnects reduce bottlenecks in data-parallel processing. For example, in VR development pipelines, supports seamless scaling across GPUs to handle photorealistic scene generation without frame drops. However, unlike consumer-oriented SLI, Quadro multi-GPU setups via SLI or are only for specific professional applications, with driver support optimized for validated software to ensure stability and precision. This process limits broad compatibility, focusing instead on reliability in enterprise environments where hardware complements multi-GPU parallelism.

Synchronization and Expansion Features

NVIDIA Quadro Sync, introduced in 2010, is a PCIe add-in card designed to provide and framelock capabilities for synchronizing multiple displays in professional environments such as broadcast production and video walls. The card connects to up to four compatible Quadro or RTX GPUs via dedicated connectors, enabling frame-accurate alignment across displays or projectors to prevent tearing and ensure seamless multi-display operation. This synchronization is particularly valuable for applications requiring precise timing, such as virtual production sets and large-scale simulations, where even minor frame discrepancies can disrupt visual continuity. Complementing the Sync functionality, Quadro SDI cards offer (SDI) input and output ports, allowing direct integration with professional video equipment for frame-accurate capture and playback. These cards support formats up to 12-bit depth and are compatible with SDI standards for broadcast workflows, ensuring that external video sources remain locked to the GPU's rendering pipeline without latency. For instance, the Quadro SDI Output card facilitates embedding SDI signals into multi-display setups, enhancing in post-production and live event scenarios. Quadro Plex systems represent NVIDIA's approach to external GPU expansion, providing scalable enclosures for multi-GPU configurations in systems lacking sufficient internal PCIe slots. The Quadro Plex 7000, for example, houses two Quadro 6000 GPUs connected via SLI technology, delivering up to 12 GB of graphics memory for handling large datasets in visualization tasks without compromising host system space. These enclosures connect to the host workstation through a dedicated PCI Express interface, enabling compute-intensive workloads like 3D modeling and scientific rendering in environments where internal expansion is limited. Over time, Quadro Sync maintained compatibility with multiple architectures, including up to current generations, supporting features like technology for spanning applications across synchronized displays. In 2025, as part of 's broader rebranding of professional graphics to the RTX PRO lineup, Quadro Sync was renamed RTX PRO Sync, with no changes to its core hardware or functionality but updated firmware to enhance support for newer GPUs and variable refresh rates. Quadro Plex, while discontinued in favor of internal multi-GPU solutions, influenced later external expansion concepts in professional computing.

Specialized Professional Enhancements

The Quadro Visual Computing Appliance (VCA), introduced in March 2013, was a rack-mounted network appliance designed to accelerate rendering workflows in professional visualization and design environments. It featured four high-end Quadro GPUs, such as the K6000, in a compact 1U form factor, enabling distributed rendering clusters that allowed designers to access photorealistic interactive rendering from lightweight client devices like laptops over a network. This setup supported applications in , consumer product development, and , reducing dependency on physical prototypes by delivering rapid iterations of complex 3D models with GPU-accelerated ray tracing via tools like NVIDIA Iray. Quadro SDI cards, first shipped in models like the Quadro FX 4500 SDI in early 2006, provided hardware add-ons for integrating professional GPUs with broadcast and post-production pipelines through Serial Digital Interface (SDI) connectivity. These PCI Express cards enabled direct output and capture of uncompressed video signals, supporting formats from standard definition (SD) to high definition (HD) and up to 3G-SDI standards for resolutions like 1080p at 60 Hz, facilitating real-time 3D graphics overlay in live broadcasts and film editing workflows. Later iterations, such as those paired with Quadro K5000 and K6000 GPUs around 2013-2015, integrated GPU-accelerated capture of 8-, 10-, or 12-bit video directly into the graphics pipeline, enhancing efficiency in virtual set production and augmented reality for media applications. NVIDIA Mosaic technology, launched with Quadro driver release 265 in December 2010, offered a software-hardware enhancement for creating seamless, large-scale display environments by tiling multiple monitors across one or more Quadro GPUs as a single unified desktop. This feature supported up to 16 displays in configurations like 8x2 grids, enabling professionals in CAD, , and data visualization to span applications transparently without bezel compensation or , while maintaining high frame rates for immersive review sessions. VCA and SDI were gradually phased out as standalone Quadro products during or before the Ampere architecture era in 2020, with their functionalities integrated into the broader NVIDIA RTX PRO lineup to streamline professional GPU offerings; Mosaic continues to be supported for multi-display scaling in current RTX-series cards. Support for SDI cards ended on April 30, 2020, while VCA appliances evolved into cloud-compatible rendering nodes.

Desktop Hardware

Early Interfaces (AGP and PCI)

The NVIDIA Quadro line debuted in late 1999 with the original Quadro card, based on the NV10 graphics processor and equipped with 32 MB of SDR memory running at a 135 MHz core clock. This model utilized an AGP 4x interface to connect to host systems, delivering approximately 15 million triangles per second in geometry processing, which was particularly tuned for OpenGL workloads in CAD and visualization applications without support for programmable shaders. In 2000, the Quadro2 series succeeded it, employing the NV15 processor with AGP 4x connectivity and up to 64 MB of DDR memory at a 200 MHz core clock in models like the Quadro2 Pro. These cards enhanced performance to around 100 million triangles per second through improved fixed-function pipelines for lighting and texturing, serving professional needs in and scientific visualization while maintaining compatibility with legacy systems. As the Quadro lineup expanded into the early 2000s, NVIDIA introduced PCI-based variants for cost-sensitive, entry-level professional setups lacking AGP slots. Examples include the 2003 Quadro NVS 280 PCI, built on the NV34 processor with 64 MB DDR memory and a 300 MHz core, focused on multi-monitor support and basic 2D/3D acceleration rather than high-end rendering, achieving modest OpenGL throughput suitable for office and light design tasks. Similarly, the 2004 Quadro FX 600 PCI used the same NV34 architecture with 128 MB memory, prioritizing stability and certified drivers over peak performance. By 2004, these AGP and PCI interfaces were gradually phased out as PCI Express emerged as the new standard, offering higher bandwidth for subsequent Quadro generations. Early Quadro cards emphasized reliability, OpenGL optimizations, and workstation certifications, establishing NVIDIA's foothold in professional graphics before the shader era.

PCI Express Generations

The NVIDIA Quadro lineup adopted the PCI Express (PCIe) interface starting in 2004, marking a shift from earlier AGP-based designs to enable higher bandwidth for professional visualization and compute workloads. This transition supported the growing demands of CAD, simulation, and rendering applications, with Quadro cards leveraging PCIe 1.0 initially for improved data transfer rates over previous standards. During the PCIe 1.0 and 2.0 era (2004–2010), the Quadro FX series dominated professional desktop graphics, built on NVIDIA's Tesla and subsequent architectures. Early models like the Quadro FX 4000, launched in 2004, utilized PCIe 1.0 x16 and featured 256 MB GDDR3 memory without native support, focusing on certified drivers for stability in professional software such as and . By 2006, the introduction of with the G80-based Quadro FX 4600 (PCIe 2.0 x16, 768 MB GDDR3) enabled general-purpose computing on GPUs, accelerating tasks like scientific simulations and allowing developers to program the GPU directly for parallel processing. The series culminated in high-end offerings like the Quadro FX 5800 (2008, PCIe 2.0 x16, 4 GB GDDR3, 240 cores), which delivered 102 GB/s and supported real-time ray tracing previews, though without API compatibility, relying instead on and for rendering. These cards emphasized options in select variants for error-free compute in engineering workflows. The PCIe 3.0 generation (2011–2016) brought the Quadro K and M series, powered by Kepler and Maxwell architectures, doubling bandwidth to 16 GT/s per lane for enhanced multi-display and compute performance. The Quadro K6000 (2013, PCIe 3.0 x16, GK110 GPU, 12 GB GDDR5, 2880 cores) exemplified this era, offering 288 GB/s memory bandwidth and robust 1.2 support for in applications like and . integration, available via drivers from 2010 onward, allowed Quadro K cards to offload parallel tasks from CPUs, improving efficiency in scientific visualization and finite element analysis. Later Maxwell-based models, such as the Quadro M6000 (2015, PCIe 3.0 x16, 24 GB GDDR5), built on this with improved power efficiency and initial 1.0 support through driver updates starting in 2016, enabling modern graphics pipelines for VR and real-time rendering without the limitations of earlier FX cards. From 2017 to 2024, the Quadro RTX and T series, based on Turing and architectures, advanced to PCIe 4.0 support in later models, providing up to 32 GT/s per lane for data-intensive AI and ray-tracing workloads. The Quadro RTX 8000 (2018, PCIe 3.0 x16, TU102 GPU, 48 GB GDDR6) introduced dedicated RT and Tensor cores, delivering over 130 TFLOPS for inference and real-time ray tracing in tools like . 1.1+ compatibility, fully realized in Turing drivers, enhanced cross-API performance for professional simulations. Subsequent -based variants like the RTX A6000 (2020, PCIe 4.0 x16, GA102 GPU, 48 GB GDDR6) doubled bandwidth to approximately 32 GB/s, optimizing large-scale datasets in media/entertainment and AEC pipelines while maintaining with PCIe 3.0 systems. These RTX/T cards prioritized certified scalability for multi-GPU setups, with enabling efficient shader execution in complex scenes.

RTX and Successor Models

The Quadro RTX series, introduced in 2018 based on NVIDIA's Turing architecture, marked the integration of real-time ray tracing and AI acceleration into professional workstation GPUs. These cards featured dedicated RT cores for ray tracing and Tensor cores for tasks, enabling enhanced rendering and simulation workflows in fields like CAD, , and scientific visualization. Representative models included the Quadro RTX 4000 with 2,304 cores, 288 Tensor cores, 36 RT cores, and 8 GB GDDR6 memory; the Quadro RTX 5000 with 3,072 cores, 384 Tensor cores, 48 RT cores, and 16 GB GDDR6; the Quadro RTX 6000 with 4,608 cores, 576 Tensor cores, 72 RT cores, and 24 GB GDDR6; and the flagship Quadro RTX 8000 with identical core counts to the 6000 but 48 GB GDDR6 for handling massive datasets in complex simulations. As the Quadro brand transitioned toward the NVIDIA RTX professional lineup by 2020, the Ampere-based A-series served as key workstation-focused models, building on Turing's foundations with third-generation Tensor cores and second-generation RT cores for improved AI inferencing and ray-traced viewport performance. These cards emphasized scalability for professional applications, such as real-time collaboration in design software and accelerated rendering pipelines. Notable examples included the RTX A4500 with 7,168 CUDA cores, 224 Tensor cores, 56 RT cores, and 20 GB GDDR6, and the RTX A6000 with 10,752 CUDA cores, 336 Tensor cores, 84 RT cores, and up to 48 GB GDDR6, supporting workflows requiring high memory capacity like large-scale 3D modeling and AI-driven content creation. In 2025, introduced the RTX PRO series based on the Blackwell architecture, representing the immediate successors to the RTX professional lineage with a focus on efficiency and multi-workload acceleration. The RTX PRO 6000 is the successor to the RTX 6000 Ada Generation, offering double the memory capacity (96 GB GDDR7 with ECC vs. 48 GB GDDR6 with ECC), higher memory bandwidth (~1.6–1.8 TB/s vs. ~960 GB/s), more CUDA cores (24,064 vs. 18,176), advanced 5th-gen Tensor Cores vs. 4th-gen, 4th-gen RT Cores vs. 3rd-gen, higher power consumption (600 W vs. 300 W), PCIe 5.0 x16 vs. PCIe 4.0 x16 interface, and improved performance in AI, rendering, and simulation workloads; both are dual-slot form factor for professional use. The RTX PRO 6000 Blackwell Edition exemplifies this shift, featuring 24,064 cores, fifth-generation Tensor cores delivering up to 4,000 AI for advanced generative AI tasks, fourth-generation RT cores providing 380 TFLOPS of ray tracing performance, and 96 GB GDDR7 memory with ECC support for error-free computations in demanding environments like scientific simulations and virtual production. This high-capacity VRAM enables the handling of large AI models with 120 billion or more parameters at full precision, achieving high inference speeds such as over 160 tokens per second for 120B models, high-resolution image generation, large batch processing, complex model training such as LoRA learning, and handling large-scale AI models locally without cloud limitations. Key upgrades include enhanced AI acceleration for faster model and in professional tools, alongside improved power efficiency—up to 600 W TDP with optimized thermal design—enabling sustained performance in compact setups without excessive energy draw. Additionally, the RTX PRO 6000 Blackwell Server Edition extends these capabilities to server environments, delivering up to 5.6x faster LLM inference and 3.5x faster text-to-video generation compared to the previous generation.

Mobile and Business Solutions

Laptop Graphics Cards

NVIDIA's Quadro mobile graphics cards, designed for laptops and mobile workstations, prioritize certified performance for CAD, , and visualization tasks while addressing thermal and power constraints inherent to portable devices. Introduced in 2003, these GPUs evolved from the Quadro FX M series, which utilized architectures like Rankine, , and Tesla to deliver workstation-class capabilities in form factors. Early models, such as the Quadro FX 3700M released in 2008, featured 1 GB of GDDR3 memory and a 550 MHz core clock, supporting 10 but lacking API compatibility due to their pre-Kepler architectures. These cards operated within the MXM () standard, enabling modular upgrades in compatible laptops but limited by the era's 40-65 nm process nodes and power envelopes up to 100 W. From 2011 to 2016, the Quadro lineup transitioned to the M and NVS M series, leveraging Kepler and Maxwell architectures for improved efficiency and feature sets. The Quadro K series, based on Kepler (e.g., Quadro K5000M with 4 GB GDDR5), introduced better support for 4.3 and initial Vulkan readiness in later iterations, enhancing rendering for complex 3D models. Maxwell-based Quadro M models, such as the high-end Quadro M5000M launched in 2015, offered up to 8 GB of GDDR5 memory, 1536 cores, and a boost clock of 1051 MHz, providing up to 2x the performance of prior Kepler mobile GPUs in professional applications like . These cards maintained MXM compatibility for select systems, but thermal throttling became a notable constraint, with GPUs downclocking under sustained loads to manage dissipation within slim , often capping effective performance at 70-80% of desktop equivalents. Starting in 2019 with the Turing architecture, the Quadro mobile series was rebranded to RTX, incorporating Turing and later architectures with dedicated RT and Tensor cores for ray tracing and AI-accelerated workflows. The Quadro RTX 5000 Max-Q, introduced in 2019 on Turing, featured 16 GB GDDR6 , 3072 cores, and up to 1455 MHz boost, enabling real-time ray-traced rendering in tools like while using Max-Q technology to reduce power draw by 30-50% compared to non-Max-Q variants for thinner laptops. -based models, such as the RTX A5000 mobile from 2021, extended this with 6144 cores, 16 GB GDDR6, and enhanced sparsity support for , delivering up to 2x faster AI inferencing over Turing predecessors. Subsequent Ada Lovelace-based models, such as the RTX 5000 Ada Laptop GPU released in March 2023, feature 9728 cores, 16 GB GDDR6 , and third-generation RT and Tensor cores, offering up to 2x the ray-tracing performance of counterparts for advanced professional mobile workflows as of 2025. However, mobile RTX GPUs face inherent limitations: no support for full multi-GPU configurations like due to space and power restrictions, reliance on the MXM or soldered designs that limit upgradability, and frequent thermal throttling in prolonged professional workloads, where temperatures exceeding 85°C trigger clock reductions to prevent overheating. These optimizations ensure reliability in mobile environments but trade some raw power for portability, with performance typically 60-80% of desktop RTX counterparts under equivalent conditions.

NVS and Entry-Level Business Cards

The Quadro NVS series was introduced in 2006 as a line of professional graphics cards targeted at IT and business environments, emphasizing reliable multi-monitor setups for productivity rather than high-performance rendering or gaming. Early models, such as the Quadro NVS 285 launched in 2006, utilized the NV44 graphics processor on a 110 nm to support dual displays in low-profile, single-slot form factors suitable for small form factor desktops. These cards prioritized stability and compatibility with , including tools for desktop management and multi-desktop configurations, to enhance workflows in corporate settings. Key features of the NVS series included robust multi-display support, with capabilities extending to up to eight outputs in later models, enabling configurations like video walls or expansive without the need for high computational power. For instance, the NVS 810, released in October 2015 and based on the Maxwell architecture with a dual-GPU design, featured eight mini-DisplayPort 1.2 connectors that could drive up to eight 4K (4096x2160) displays at 30 Hz or four at 60 Hz, while maintaining a low power draw of 68 W in a single-slot form factor. Additional technologies such as for seamless spanning across displays, bezel correction, and Warp & Blend facilitated easy management of large-scale visualizations, with a focus on cost-effective for mission-critical business installations. The series avoided gaming-oriented optimizations, instead delivering certified drivers for professional applications that ensured long-term reliability and reduced power consumption, typically under 75 W for most models, to suit energy-efficient office deployments. Mobile variants of the NVS series were integrated into business laptops to provide similar multi-display and stability benefits in portable form factors. The Quadro NVS 5400M, launched in June 2012 on the 40 nm GF108 process, offered 96 CUDA cores and 1 GB DDR3 memory, supporting up to two displays at resolutions up to 2560x1600 while consuming only 35 W, making it ideal for enterprise mobile workstations focused on productivity tasks like software and light visualization. These mobile cards maintained the series' emphasis on driver stability and compatibility with business ecosystems, often certified for ISV applications in sectors such as and . By 2020, the NVS series was phased out and its entry-level business functionalities merged into 's T-series professional cards, such as the T400, T600, and , which continued the legacy of low-power, multi-display support for up to four 4K displays per card in modern Turing and architectures. This evolution continued with Ada Lovelace-based models like the RTX 2000 Ada Generation released in 2023, supporting up to four 8K displays and enhanced enterprise features for productivity as of 2025. maintained legacy driver support for NVS models post-rebranding through its Quadro driver branch, ensuring ongoing compatibility for existing business deployments under the transitioned professional lineup.

Software Ecosystem

Drivers and Certification

NVIDIA Quadro drivers form a critical component of the professional graphics ecosystem, optimized for stability, reliability, and long-term enterprise use rather than frequent feature updates seen in branches. These drivers, now integrated into the Enterprise family, include Production Branch (PB) releases like the R470 series, which support legacy Quadro hardware such as Kepler, Maxwell, Pascal, and Volta architectures. The R470 branch, for instance, emphasizes bug fixes and security enhancements over new capabilities, ensuring consistent performance in professional workflows. Quadro GPUs receive extensive (ISV) certifications to guarantee compatibility and peak performance with industry-standard applications. collaborates with leading ISVs, including for tools like and Inventor, and for , validating drivers against specific software versions to enable features such as RealView graphics and enhanced rendering. These certifications, numbering in the hundreds across creative, , and scientific domains, are supported by beta driver programs that allow ISVs for testing and optimization before public release. The support lifecycle for Quadro products typically spans up to 10 years from launch, encompassing full driver updates, performance optimizations, and extended security patches to meet enterprise deployment needs. For older generations, such as Maxwell, Pascal, and Volta-based Quadro cards, NVIDIA provides maintenance through legacy branches like R470 and R580, with quarterly security updates under the R580 branch continuing until approximately August 2026. Post-rebranding in 2021, legacy Quadro support has been unified under the Enterprise drivers, ensuring seamless continuity for existing hardware and software ecosystems beyond 2025. This transition aligns Quadro's driver architecture with modern RTX professional GPUs while preserving certifications and lifecycle commitments for older models.

SDKs and Hardware Acceleration Support

Quadro GPUs provide extensive support for NVIDIA's software development kits (SDKs), enabling developers to leverage hardware features for , ray tracing, and low-level GPU control in professional applications. The primary SDK is , a platform and that allows software developers to harness the computational power of Quadro GPUs for general-purpose processing beyond graphics rendering. Introduced with early architectures, has evolved alongside Quadro hardware, with compatibility determined by compute capability (CC) levels that define supported instructions and features. For instance, the Fermi-based Quadro 6000 features CC 2.0 and is supported up to 8.0, while Ampere-based models like the RTX A6000 use CC 8.6 and require at least 11.0, with optimal performance on 12.x versions that introduce enhancements like improved for AI workloads. Complementing CUDA, the OptiX SDK offers an application framework optimized for ray tracing on Quadro GPUs, accelerating complex rendering pipelines through GPU-accelerated traversal and shading. OptiX supports Quadro cards starting from Kepler architecture (CC 3.0), with full compatibility for Fermi (CC 2.0) in legacy versions, though modern releases like OptiX 8.0 emphasize architectures from Maxwell onward for advanced features such as hybrid rendering. It leverages RT Cores introduced in Turing-based Quadro RTX series (CC 7.5), enabling hardware-accelerated ray-triangle intersection and denoising for real-time photorealistic visualization in CAD and . For low-level access to GPU and driver capabilities, NVAPI serves as NVIDIA's core SDK, providing interfaces for Quadro developers to manage hardware resources directly on Windows platforms. Key features include GPU enumeration, display configuration, version controls, and support for professional workflows like multi-GPU via Quadro Sync. NVAPI is compatible with all Quadro generations from Fermi onward, enabling custom optimizations such as warp and blend for edge-blended displays in visualization setups. Quadro GPUs also feature dedicated hardware acceleration for video encode (NVENC) and decode (NVDEC), integrated into the Video Codec SDK for efficient media processing in professional and streaming. NVENC support begins with the first generation on Kepler architectures, offering H.264 encoding, while subsequent generations add codecs and performance improvements; for example, Fermi introduces NVDEC for H.264 decode, Kepler introduces NVENC for H.264 encode, Maxwell adds HEVC decode and encode, and adds AV1 encode with up to 3 NVENC engines per GPU for 8K workflows. The full compatibility matrix, which varies by model and includes session limits (e.g., up to 3 concurrent 8K HEVC encodes on Turing Quadro RTX 6000), is detailed in NVIDIA's official GPU support documentation. Representative support across Quadro architectures is summarized below:
ArchitectureNVENC Generation & Key EncodesNVDEC Generation & Key DecodesMax NVENC Engines (Example Model)
Fermi (e.g., Quadro 6000)Not supportedGen 1: H.264, MPEG-1/2/4, VC-1N/A
Kepler (e.g., Quadro K5000)Gen 1: H.264Gen 1: H.264, MPEG-2/4, VC-11
Maxwell (e.g., Quadro M6000)Gen 2/3: H.264, HEVCGen 2: H.264, HEVC, VP81
Pascal (e.g., Quadro P6000)Gen 4: H.264, HEVC, VP9Gen 3: H.264, HEVC, VP92
Turing (e.g., Quadro RTX 6000)Gen 5: H.264, HEVC, VP9Gen 4: H.264, HEVC, VP9, AV12
Ampere (e.g., RTX A6000)Gen 7: H.264, HEVC, VP9Gen 5: H.264, HEVC, VP9, AV13
Ada (e.g., RTX 6000 Ada)Gen 8: H.264, HEVC, VP9, AV1Gen 6: H.264, HEVC, VP9, AV1, MPEG-43
This acceleration enables low-latency, high-quality video handling without taxing CPU resources, with Quadro's drivers ensuring stability for certified applications.

References

Add your contribution
Related Hubs
User Avatar
No comments yet.