Recent from talks
Nothing was collected or created yet.
Electric generator
View on Wikipedia
In electricity generation, a generator, also called an electric generator, electrical generator, and electromagnetic generator is an electromechanical device that converts mechanical energy to electrical energy for use in an external circuit.[1][2] In most generators which are rotating machines, a source of kinetic power rotates the generator's shaft, and the generator produces an electric current at its output terminals which flows through an external circuit, powering electrical loads. Sources of mechanical energy used to drive generators include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. Generators produce nearly all of the electric power for worldwide electric power grids. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday.
The reverse conversion of electrical energy into mechanical energy is done by an electric motor, and motors and generators are very similar. Some motors can be used in a "backward" sense as generators, if their shaft is rotated they will generate electric power.
In addition to its most common usage for electromechanical generators described above, the term generator is also used for photovoltaic, fuel cell, and magnetohydrodynamic powered devices that use solar power and chemical fuels, respectively, to generate electrical power.
Terminology
[edit]
Electromagnetic generators fall into one of two broad categories, dynamos and alternators.
- Dynamos generate pulsing direct current through the use of a commutator.
- Alternators generate alternating current.
Mechanically, a generator consists of a rotating part and a stationary part which together form a magnetic circuit:
- Rotor: The rotating part of an electrical machine.
- Stator: The stationary part of an electrical machine, which surrounds the rotor.
One of these parts generates a magnetic field, the other has a wire winding in which the changing field induces an electric current:
- Field winding or field (permanent) magnets: The magnetic field-producing component of an electrical machine. The magnetic field of the dynamo or alternator can be provided by either wire windings called field coils or permanent magnets. Electrically excited generators include an excitation system to produce the field flux. A generator using permanent magnets (PMs) is sometimes called a magneto, or a permanent magnet synchronous generator (PMSG).
- Armature: The power-producing component of an electrical machine. In a generator, alternator, or dynamo, the armature windings generate the electric current, which provides power to an external circuit.
The armature can be on either the rotor or the stator, depending on the design, with the field coil or magnet on the other part.
History
[edit]Before the connection between magnetism and electricity was discovered, electrostatic generators were invented. They operated on electrostatic principles, by using moving electrically charged belts, plates and disks that carried charge to a high potential electrode. The charge was generated using either of two mechanisms: electrostatic induction or the triboelectric effect. Such generators generated very high voltage and low current. Because of their inefficiency and the difficulty of insulating machines that produced very high voltages, electrostatic generators had low power ratings, and were never used for generation of commercially significant quantities of electric power. Their only practical applications were to power early X-ray tubes, and later in some atomic particle accelerators.
Faraday disk generator
[edit]
The operating principle of electromagnetic generators was discovered in the years of 1831–1832 by Michael Faraday. The principle, later called Faraday's law of induction, is that an electromotive force is generated in an electrical conductor which encircles a varying magnetic flux.
Faraday also built the first electromagnetic generator, called the Faraday disk; a type of homopolar generator, using a copper disc rotating between the poles of a horseshoe magnet. It produced a small DC voltage.
This design was inefficient, due to self-cancelling counterflows of current in regions of the disk that were not under the influence of the magnetic field. While current was induced directly underneath the magnet, the current would circulate backwards in regions that were outside the influence of the magnetic field. This counterflow limited the power output to the pickup wires and induced waste heating of the copper disc. Later homopolar generators would solve this problem by using an array of magnets arranged around the disc perimeter to maintain a steady field effect in one current-flow direction.
Another disadvantage was that the output voltage was very low, due to the single current path through the magnetic flux. Experimenters found that using multiple turns of wire in a coil could produce higher, more useful voltages. Since the output voltage is proportional to the number of turns, generators could be easily designed to produce any desired voltage by varying the number of turns. Wire windings became a basic feature of all subsequent generator designs.
Jedlik and the self-excitation phenomenon
[edit]Independently of Faraday, Ányos Jedlik started experimenting in 1827 with the electromagnetic rotating devices which he called electromagnetic self-rotors. In the prototype of the single-pole electric starter (finished between 1852 and 1854) both the stationary and the revolving parts were electromagnetic. It was also the discovery of the principle of dynamo self-excitation,[3] which replaced permanent magnet designs. He also may have formulated the concept of the dynamo in 1861 (before Siemens and Wheatstone) but did not patent it as he thought he was not the first to realize this.[4]
Direct current generators
[edit]

A coil of wire rotating in a magnetic field produces a current which changes direction with each 180° rotation, an alternating current (AC). However many early uses of electricity required direct current (DC). In the first practical electric generators, called dynamos, the AC was converted into DC with a commutator, a set of rotating switch contacts on the armature shaft. The commutator reversed the connection of the armature winding to the circuit every 180° rotation of the shaft, creating a pulsing DC current. One of the first dynamos was built by Hippolyte Pixii in 1832.
The dynamo was the first electrical generator capable of delivering power for industry. The Woolrich Electrical Generator of 1844, now in Thinktank, Birmingham Science Museum, is the earliest electrical generator used in an industrial process.[5] It was used by the firm of Elkingtons for commercial electroplating.[6][7][8]
The modern dynamo, fit for use in industrial applications, was invented independently by Sir Charles Wheatstone, Werner von Siemens and Samuel Alfred Varley. Varley took out a patent on 24 December 1866, while Siemens and Wheatstone both announced their discoveries on 17 January 1867 by delivering papers at the Royal Society.[9][10]
The "dynamo-electric machine" employed self-powering electromagnetic field coils rather than permanent magnets to create the stator field.[11] Wheatstone's design was similar to Siemens', with the difference that in the Siemens design the stator electromagnets were in series with the rotor, but in Wheatstone's design they were in parallel.[9][10] The use of electromagnets rather than permanent magnets greatly increased the power output of a dynamo and enabled high power generation for the first time. This invention led directly to the first major industrial uses of electricity. For example, in the 1870s Siemens used electromagnetic dynamos to power electric arc furnaces for the production of metals and other materials.
The dynamo machine that was developed consisted of a stationary structure, which provides the magnetic field, and a set of rotating windings which turn within that field. On larger machines the constant magnetic field is provided by one or more electromagnets, which are usually called field coils.
Large power generation dynamos are now rarely seen due to the now nearly universal use of alternating current for power distribution. Before the adoption of AC, very large direct-current dynamos were the only means of power generation and distribution. AC has come to dominate due to the ability of AC to be easily transformed to and from very high voltages to permit low losses over large distances.
Synchronous generators (alternating current generators)
[edit]
Through a series of discoveries, the dynamo was succeeded by many later inventions, especially the AC alternator, which was capable of generating alternating current. It is commonly known to be the Synchronous Generators (SGs). The synchronous machines are directly connected to the grid and need to be properly synchronized during startup.[12] Moreover, they are excited with special control to enhance the stability of the power system.[13]
Alternating current generating systems were known in simple forms from Michael Faraday's original discovery of the magnetic induction of electric current. Faraday himself built an early alternator. His machine was a "rotating rectangle", whose operation was heteropolar: each active conductor passed successively through regions where the magnetic field was in opposite directions.[14]
Large two-phase alternating current generators were built by a British electrician, J. E. H. Gordon, in 1882. The first public demonstration of an "alternator system" was given by William Stanley Jr., an employee of Westinghouse Electric in 1886.[15]
Sebastian Ziani de Ferranti established Ferranti, Thompson and Ince in 1882, to market his Ferranti-Thompson Alternator, invented with the help of renowned physicist Lord Kelvin.[16] His early alternators produced frequencies between 100 and 300 Hz. Ferranti went on to design the Deptford Power Station for the London Electric Supply Corporation in 1887 using an alternating current system. On its completion in 1891, it was the first truly modern power station, supplying high-voltage AC power that was then "stepped down" for consumer use on each street. This basic system remains in use today around the world.

After 1891, polyphase alternators were introduced to supply currents of multiple differing phases.[17] Later alternators were designed for varying alternating-current frequencies between sixteen and about one hundred hertz, for use with arc lighting, incandescent lighting and electric motors.[18]
Self-excitation
[edit]As the requirements for larger scale power generation increased, a new limitation rose: the magnetic fields available from permanent magnets. Diverting a small amount of the power generated by the generator to an electromagnetic field coil mounted on the rotor allowed the generator to produce substantially more power. This concept was dubbed self-excitation.
The field coils are connected in series or parallel with the armature winding. When the generator first starts to turn, the small amount of remanent magnetism present in the iron core provides a magnetic field to get it started, generating a small current in the armature. This flows through the field coils, creating a larger magnetic field which generates a larger armature current. This "bootstrap" process continues until the magnetic field in the core levels off due to saturation and the generator reaches a steady state power output.
Very large power station generators often utilize a separate smaller generator to excite the field coils of the larger. In the event of a severe widespread power outage where islanding of power stations has occurred, the stations may need to perform a black start to excite the fields of their largest generators, in order to restore customer power service.
Specialised types of generator
[edit]Direct current (DC)
[edit]A dynamo uses commutators to produce direct current. It is self-excited, i.e. its field electromagnets are powered by the machine's own output. Other types of DC generators use a separate source of direct current to energize their field magnets.
Homopolar generator
[edit]A homopolar generator is a DC electrical generator comprising an electrically conductive disc or cylinder rotating in a plane perpendicular to a uniform static magnetic field. A potential difference is created between the center of the disc and the rim (or ends of the cylinder), the electrical polarity depending on the direction of rotation and the orientation of the field.
It is also known as a unipolar generator, acyclic generator, disk dynamo, or Faraday disc. The voltage is typically low, on the order of a few volts in the case of small demonstration models, but large research generators can produce hundreds of volts, and some systems have multiple generators in series to produce an even larger voltage.[19] They are unusual in that they can produce tremendous electric current, some more than a million amperes, because the homopolar generator can be made to have very low internal resistance.
Magnetohydrodynamic (MHD) generator
[edit]A magnetohydrodynamic generator directly extracts electric power from moving hot gases through a magnetic field, without the use of rotating electromagnetic machinery. MHD generators were originally developed because the output of a plasma MHD generator is a flame, well able to heat the boilers of a steam power plant. The first practical design was the AVCO Mk. 25, developed in 1965. The U.S. government funded substantial development, culminating in a 25 MW demonstration plant in 1987. In the Soviet Union from 1972 until the late 1980s, the MHD plant U 25 was in regular utility operation on the Moscow power system with a rating of 25 MW, the largest MHD plant rating in the world at that time.[20] MHD generators operated as a topping cycle are currently (2007) less efficient than combined cycle gas turbines.
Alternating current (AC)
[edit]Induction generator
[edit]Induction AC motors may be used as generators, turning mechanical energy into electric current. Induction generators operate by mechanically turning their rotor faster than the simultaneous speed, giving negative slip. A regular AC non-simultaneous motor usually can be used as a generator, without any changes to its parts. Induction generators are useful in applications like minihydro power plants, wind turbines, or in reducing high-pressure gas streams to lower pressure, because they can recover energy with relatively simple controls. They do not require another circuit to start working because the turning magnetic field is provided by induction from the one they have. They also do not require speed governor equipment as they inherently operate at the connected grid frequency.
An induction generator must be powered with a leading voltage; this is usually done by connection to an electrical grid, or by powering themselves with phase correcting capacitors.
Linear electric generator
[edit]In the simplest form of linear electric generator, a sliding magnet moves back and forth through a solenoid, a copper wire or a coil. An alternating current is induced in the wire, or loops of wire, by Faraday's law of induction each time the magnet slides through. This type of generator is used in the Faraday flashlight. Larger linear electricity generators are used in wave power schemes.
Variable-speed constant-frequency generators
[edit]Grid-connected generators deliver power at a constant frequency. For generators of the synchronous or induction type, the prime mover speed turning the generator shaft must be at a particular speed (or narrow range of speed) to deliver power at the required utility frequency. Mechanical speed-regulating devices may waste a significant fraction of the input energy to maintain a required fixed frequency.
Where it is impractical or undesired to tightly regulate the speed of the prime mover, doubly fed electric machines may be used as generators. With the assistance of power electronic devices, these can regulate the output frequency to a desired value over a wider range of generator shaft speeds. Alternatively, a standard generator can be used with no attempt to regulate frequency, and the resulting power converted to the desired output frequency with a rectifier and converter combination. Allowing a wider range of prime mover speeds can improve the overall energy production of an installation, at the cost of more complex generators and controls. For example, where a wind turbine operating at fixed frequency might be required to spill energy at high wind speeds, a variable speed system can allow recovery of energy contained during periods of high wind speed.
Common use cases
[edit]Power station
[edit]A power station, also known as a power plant or powerhouse and sometimes generating station or generating plant, is an industrial facility that generates electricity. Most power stations contain one or more generators, or spinning machines converting mechanical power into three-phase electrical power. The relative motion between a magnetic field and a conductor creates an electric current. The energy source harnessed to turn the generator varies widely. Most power stations in the world burn fossil fuels such as coal, oil, and natural gas to generate electricity. Cleaner sources include nuclear power, and increasingly use renewables such as the sun, wind, waves and running water.
Vehicular generators
[edit]
Roadway vehicles
[edit]Motor vehicles require electrical energy to power their instrumentation, keep the engine itself operating, and recharge their batteries. Until about the 1960s motor vehicles tended to use DC generators (dynamos) with electromechanical regulators. Following the historical trend above and for many of the same reasons, these have now been replaced by alternators with built-in rectifier circuits.
Bicycles
[edit]Bicycles require energy to power running lights and other equipment. There are two common kinds of generator in use on bicycles: bottle dynamos which engage the bicycle's tire on an as-needed basis, and hub dynamos which are directly attached to the bicycle's drive train. The name is conventional as they are small permanent-magnet alternators, not self-excited DC machines as are dynamos. Some electric bicycles are capable of regenerative braking, where the drive motor is used as a generator to recover some energy during braking.
Sailboats
[edit]Sailing boats may use a water- or wind-powered generator to trickle-charge the batteries. A small propeller, wind turbine or turbine is connected to a low-power generator to supply currents at typical wind or cruising speeds.
Recreational vehicles
[edit]Recreational vehicles need an extra power supply to power their onboard accessories, including air conditioning units, and refrigerators. An RV power plug is connected to the electric generator to obtain a stable power supply.[21]
Electric scooters
[edit]Electric scooters with regenerative braking have become popular all over the world. Engineers use kinetic energy recovery systems on the scooter to reduce energy consumption and increase its range up to 40-60% by simply recovering energy using the magnetic brake, which generates electric energy for further use. Modern vehicles reach speed up to 25–30 km/h and can run up to 35–40 km.
Genset
[edit]An engine–generator is the combination of an electrical generator and an engine (prime mover) mounted together to form a single piece of self-contained equipment. The engines used are usually piston engines, but gas turbines can also be used, and there are even hybrid diesel-gas units, called dual-fuel units. Many different versions of engine–generators are available – ranging from very small portable petrol powered sets to large turbine installations. The primary advantage of engine–generators is the ability to independently supply electricity, allowing the units to serve as backup power sources.[22]
Human powered electrical generators
[edit]A generator can also be driven by human muscle power (for instance, in field radio station equipment).
Human powered electric generators are commercially available, and have been the project of some DIY enthusiasts. Typically operated by means of pedal power, a converted bicycle trainer, or a foot pump, such generators can be practically used to charge batteries, and in some cases are designed with an integral inverter. An average "healthy human" can produce a steady 75 watts (0.1 horsepower) for a full eight hour period, while a "first class athlete" can produce approximately 298 watts (0.4 horsepower) for a similar period, at the end of which an undetermined period of rest and recovery will be required. At 298 watts, the average "healthy human" becomes exhausted within 10 minutes.[24] The net electrical power that can be produced will be less, due to the efficiency of the generator. Portable radio receivers with a crank are made to reduce battery purchase requirements, see clockwork radio. During the mid 20th century, pedal powered radios were used throughout the Australian outback, to provide schooling (School of the Air), medical and other needs in remote stations and towns.
Mechanical measurement
[edit]A tachogenerator is an electromechanical device which produces an output voltage proportional to its shaft speed. It may be used for a speed indicator or in a feedback speed control system. Tachogenerators are frequently used to power tachometers to measure the speeds of electric motors, engines, and the equipment they power. Generators generate voltage roughly proportional to shaft speed. With precise construction and design, generators can be built to produce very precise voltages for certain ranges of shaft speeds.[citation needed]
Equivalent circuit
[edit]
- G, generator
- VG, generator open-circuit voltage
- RG, generator internal resistance
- VL, generator on-load voltage
- RL, load resistance
An equivalent circuit of a generator and load is shown in the adjacent diagram. The generator is represented by an abstract generator consisting of an ideal voltage source and an internal impedance. The generator's and parameters can be determined by measuring the winding resistance (corrected to operating temperature), and measuring the open-circuit and loaded voltage for a defined current load.
This is the simplest model of a generator, further elements may need to be added for an accurate representation. In particular, inductance can be added to allow for the machine's windings and magnetic leakage flux,[25] but a full representation can become much more complex than this.[26]
See also
[edit]- Diesel generator
- Electricity generation
- Electric motor
- Engine–generator
- Faraday's law of induction
- Gas turbine
- Generation expansion planning
- Goodness factor
- Hydropower
- Steam generator (boiler)
- Steam generator (railroad)
- Steam turbine
- Superconducting electric machine
- Synchronverter
- Thermoelectric generator
- Thermal power station
- Tidal stream generator
References
[edit]- ^ Sahdev, S. K. (2018). Electrical Machines. Cambridge University Press. p. 48. ISBN 9781108431064.
- ^ Kamm, Lawrence J. (1995). Understanding Electro-Mechanical Engineering: An Introduction to Mechatronics. John Wiley and Sons. p. 67. ISBN 9780780310315.
- ^ Augustus Heller (April 2, 1896). "Anianus Jedlik". Nature. 53 (1379). Norman Lockyer: 516. Bibcode:1896Natur..53..516H. doi:10.1038/053516a0.
- ^ Augustus Heller (2 April 1896), "Anianus Jedlik", Nature, 53 (1379), Norman Lockyer: 516, Bibcode:1896Natur..53..516H, doi:10.1038/053516a0
- ^ Birmingham Museums trust catalogue, accession number: 1889S00044
- ^ Thomas, John Meurig (1991). Michael Faraday and the Royal Institution: The Genius of Man and Place. Bristol: Hilger. p. 51. ISBN 978-0750301459.
- ^ Beauchamp, K G (1997). Exhibiting Electricity. IET. p. 90. ISBN 9780852968956.
- ^ Hunt, L. B. (March 1973). "The early history of gold plating". Gold Bulletin. 6 (1): 16–27. doi:10.1007/BF03215178.
- ^ a b Siemens, Charles William (1867). "II. On the conversion of dynamical into electrical force without the aid of permanent magnetism" (PDF). Proceedings of the Royal Society of London. 15: 367–369. doi:10.1098/rspl.1866.0082.
- ^ a b Wheatstone, Charles (1867). "III. On the augmentation of the power of a magnet by the reaction thereon of currents induced by the magnet itself". Proceedings of the Royal Society of London. 15: 369–372. doi:10.1098/rspl.1866.0083.
- ^ Berliner Berichte. January 1867.
{{cite journal}}: Missing or empty|title=(help) - ^ Schaefer, Richard C. (Jan–Feb 2017). "Art of Generator Synchronizing". IEEE Transactions on Industry Applications. 53 (1): 751–757. doi:10.1109/tia.2016.2602215. ISSN 0093-9994. S2CID 15682853.
- ^ Basler, Michael J.; Schaefer, Richard C. (2008). "Understanding Power-System Stability". IEEE Transactions on Industry Applications. 44 (2): 463–474. doi:10.1109/tia.2008.916726. ISSN 0093-9994. S2CID 62801526.
- ^ Thompson, Sylvanus P., Dynamo-Electric Machinery. p. 7
- ^ Blalock, Thomas J., "Alternating Current Electrification, 1886". IEEE History Center, IEEE Milestone. (ed. first practical demonstration of a dc generator – ac transformer system.)
- ^ Ferranti Timeline Archived October 3, 2015, at the Wayback Machine – Museum of Science and Industry (Accessed 22-02-2012)
- ^ Thompson, Sylvanus P., Dynamo-Electric Machinery. p. 17
- ^ Thompson, Sylvanus P., Dynamo-Electric Machinery. p. 16
- ^ Losty, H.H.W & Lewis, D.L. (1973) "Homopolar Machines". Philosophical Transactions for the Royal Society of London. Series A, Mathematical and Physical Sciences. 275 (1248), 69–75
- ^ Langdon Crane, Magnetohydrodynamic (MHD) Power Generator: More Energy from Less Fuel, Issue Brief Number IB74057, Library of Congress Congressional Research Service, 1981, retrieved from Digital.library.unt.edu 18 July 2008.
- ^ Markovich, Tony (2021-09-14). "What Your Camper or RV Needs For Living Off-Grid". Retrieved 2023-03-03.
- ^ "Hurricane Preparedness: Protection Provided by Power Generators | Power On with Mark Lum". Wpowerproducts.com. 10 May 2011. Retrieved 2012-08-24.
- ^ With Generators Gone, Wall Street Protesters Try Bicycle Power, Colin Moynihan, New York Times, 30 October 2011; accessed 2 November 2011.
- ^ "Program: hpv (updated 6/22/11)". Ohio.edu. Archived from the original on 2016-03-08. Retrieved 2012-08-24.
- ^ Geoff Klempner, Isidor Kerszenbaum, "1.7.4 Equivalent circuit", Handbook of Large Turbo-Generator Operation and Maintenance, John Wiley & Sons, 2011 (Kindle edition) ISBN 1118210409.
- ^ Yoshihide Hase, "10: Theory of generators", Handbook of Power System Engineering, John Wiley & Sons, 2007 ISBN 0470033665.
Electric generator
View on GrokipediaFundamentals
Terminology
An electric generator is a device that converts mechanical energy into electrical energy through the process of electromagnetic induction.[5] This conversion occurs when a conductor moves relative to a magnetic field, inducing an electromotive force according to Faraday's law.[6] In contrast, an electric motor operates in the reverse manner, converting electrical energy into mechanical energy.[7] While both devices rely on similar electromagnetic principles, generators produce electrical output from mechanical input, whereas motors drive mechanical output from electrical input.[8] Key components in electric generators include the armature, which is the rotating part where the electromotive force is induced in the windings; the field windings, which generate the magnetic field, often using electromagnets excited by direct current; the rotor, the rotating assembly typically containing the armature or field; and the stator, the stationary part housing the opposite windings or core.[9][10][11] The prime mover provides the mechanical power to rotate the rotor, such as a turbine or engine, while the load refers to the external circuit or device that consumes the generated electrical power.[12] The term "dynamo" originated in 1867 from the Greek word dynamis (meaning power), coined by Werner von Siemens for a dynamo-electric machine that produced direct current using self-excited electromagnets.[13] Similarly, "alternator," introduced in 1878, derives from the Latin alternare (to alternate) and specifically denotes a generator producing alternating current.[14] In modern usage, "generator" serves as the general term encompassing both direct current (DC) and alternating current (AC) machines, as "dynamo" and "alternator" have become more specialized or regionally archaic.[15] Electric generators produce either direct current (DC), where the output flows unidirectionally, or alternating current (AC), where the current periodically reverses direction, typically in a sinusoidal waveform at a specified frequency such as 50 or 60 Hz in power systems.[16] DC output is common in applications requiring steady voltage, like battery charging, while AC is preferred for efficient long-distance transmission due to its ease of voltage transformation.[17]Principles of Operation
The operation of an electric generator is fundamentally based on Faraday's law of electromagnetic induction, which states that a changing magnetic flux through a conductor induces an electromotive force (EMF) in that conductor.[18] This law is mathematically expressed as , where is the induced EMF and is the magnetic flux.[2] The induction of voltage requires relative motion between a conductor and a magnetic field, such that the conductor cuts through the magnetic flux lines, causing the flux to change over time.[19] In practical generators, this motion is achieved by rotating the conductor (typically in the form of coils) within a stationary magnetic field or vice versa, converting mechanical energy into electrical energy.[2] Key components include a magnetic field source, such as permanent magnets or electromagnets, which provides the flux; an armature consisting of conductive coils where the EMF is induced; and a prime mover, like a turbine or engine, that supplies the mechanical input to drive the rotation. The rotor and stator refer to the rotating and stationary parts, respectively, facilitating this relative motion.[20] Generators can produce single-phase or polyphase output, depending on the arrangement of the windings; single-phase generation involves one set of coils producing a single alternating waveform, suitable for smaller loads, while polyphase systems, such as three-phase, use multiple offset windings to generate simultaneous waveforms, enabling smoother power delivery and higher efficiency for industrial applications.[21] In alternating current (AC) generators, the relative motion typically results in a sinusoidal voltage waveform due to the uniform rotation in a steady magnetic field.[2] The magnetic field in generators can be established through self-excitation, where residual magnetism in the field windings initiates a buildup of current from the generator's own output, or separate excitation, in which an external DC source energizes the field independently for more precise control.[22] Self-excitation relies on the machine's inherent properties to achieve full field strength, whereas separate excitation avoids dependency on residual flux and supports variable speed operations.[23]History
Early Electromagnetic Experiments
In the early 1830s, foundational experiments in electromagnetic induction began to reveal the potential for generating electric currents through mechanical motion. Michael Faraday conducted a series of investigations at the Royal Institution in London, starting in August 1831, where he demonstrated that a changing magnetic field could induce an electric current in a nearby conductor. One pivotal setup involved a copper disc rotated on a copper axle between the poles of a horseshoe magnet, producing a continuous direct current (DC) that could be measured with a galvanometer connected via brushes to the axle and disc edge. This unipolar or homopolar generator marked the first instance of sustained electrical generation from rotary motion, as detailed in Faraday's "Experimental Researches in Electricity," presented to the Royal Society on November 24, 1831, and published the following year.[3] Independently, American physicist Joseph Henry performed similar demonstrations around the same period, confirming the principles of electromagnetic induction through experiments with coils and electromagnets. By late 1831, Henry had observed induced currents by moving a magnet relative to a coil or vice versa, showcasing deflections in a galvanometer during lectures to students at the Albany Academy. He published his findings in the American Journal of Science in July 1832, emphasizing the role of mutual inductance in these interactions, which paralleled Faraday's work but utilized larger insulated wire coils to amplify effects. These demonstrations underscored the reciprocal nature of electricity and magnetism, building on earlier static observations like those of Hans Christian Ørsted in 1820.[24] Building directly on Faraday's induction principle, French instrument maker Hippolyte Pixii constructed the first practical ring generator in 1832. Pixii's device featured a hand-cranked rotating permanent magnet positioned above a stationary coil wound around an iron core, generating an alternating current (AC) that was converted to pulsing DC via a rudimentary commutator—a split metal ring that reversed connections at each half-rotation. Commissioned in part by André-Marie Ampère, this magneto-electric machine produced sparks visible across a small gap, demonstrating the feasibility of mechanical-to-electrical conversion, though on a small scale.[3] These early efforts faced significant hurdles, including the inherently weak magnetic fields from available permanent magnets and the resulting low electrical output, often limited to fleeting galvanometer twitches or minimal sparks insufficient for practical applications. Without strong electromagnets—yet to be refined—the induced currents were too feeble to power devices reliably, fostering initial skepticism among scientists about the commercial viability of such generators despite their theoretical promise. This period represented a crucial transition from static induction experiments, where relative motion between magnet and conductor was linear and intermittent, to dynamic rotary configurations that enabled continuous current production, paving the way for more robust designs.[3]Development of Practical Generators
The development of practical electric generators in the 19th century built upon early electromagnetic discoveries, focusing on designs that could produce reliable, scalable power for commercial applications. Hungarian inventor and physicist Ányos Jedlik conducted pioneering experiments in the mid-19th century, particularly during the 1850s and 1860s, creating prototypes of self-exciting dynamos that relied on residual magnetism in the iron cores to generate an initial magnetic field, allowing the machine to build up its own excitation current without external batteries.[25] These early devices demonstrated the feasibility of continuous operation but remained laboratory-scale due to limitations in materials and winding techniques.[26] Advancements in armature design significantly improved efficiency and output. In 1860, Italian physicist Antonio Pacinotti introduced the ring armature, a toroidal iron core densely wound with insulated copper wire and equipped with a commutator, which minimized magnetic flux leakage and produced a smoother, more continuous direct current compared to earlier coil-based armatures.[27] This innovation increased power density and reduced sparking at the commutator, making dynamos more suitable for practical use in motors and lighting, though Pacinotti's machines still required separate excitation sources. A pivotal commercialization occurred in 1866 when German engineer Werner von Siemens invented and demonstrated the first practical self-excited dynamo, showcased at the Berlin Industrial Exhibition, where it powered arc lamps without initial external excitation by leveraging residual magnetism to amplify the field progressively.[28] This "dynamo-electric principle" enabled generators to produce substantially higher voltages—up to several hundred volts—and facilitated mass production, sparking widespread industrial adoption in telegraphy, electroplating, and early electrification projects across Europe.[29] Further refinement came in 1871 with Belgian inventor Zénobe Gramme's continuous-current dynamo, an evolution of the ring armature that incorporated multiple poles and improved commutation for steady DC output at industrial scales, powering factories and urban lighting systems effectively.[30] Gramme's machine, capable of delivering kilowatts of power, became a cornerstone for the electrical industry, with over 1,000 units produced by the 1880s for applications like railway signaling and machine tools. The dominance of DC generators waned in the late 1880s as alternating current (AC) emerged as a superior alternative for transmission. Nikola Tesla developed the polyphase AC system during the 1880s, featuring induction motors and transformers that enabled efficient voltage stepping for long-distance power distribution, which George Westinghouse acquired and promoted through his company.[31] This innovation clashed with Thomas Edison's advocacy for DC networks, igniting the "War of Currents," a fierce rivalry marked by competing demonstrations, patent battles, and public debates over safety and scalability, ultimately favoring AC for its lower transmission losses.[32]Direct Current Generators
Homopolar Generators
A homopolar generator, also known as a unipolar or acyclic generator, operates on the principle of electromagnetic induction where a rotating conductor, typically a disk or cylinder, moves through an axial magnetic field to produce a direct current (DC) output. The design features a conductive rotor that spins perpendicular to a uniform static magnetic field, with stationary brushes contacting the center and periphery of the rotor to collect the generated voltage, resulting in unipolar DC without the need for rectification.[33] The archetype of this design is the Faraday disk, invented by Michael Faraday in 1831, consisting of a copper disk rotating between the poles of a horseshoe magnet. In this setup, the induced electromotive force (EMF) arises from the Lorentz force on charges in the disk, with the open-circuit voltage given by where is the angular velocity, is the magnetic flux density, and and are the outer and inner radii of the disk, respectively; for a full disk from the axis (), this simplifies to .[33] Homopolar generators offer advantages such as inherently pure DC output without AC rectification, enabling high current capacities often exceeding 1 million amperes due to low internal resistance, and suitability for compact designs using modern permanent magnets. However, they produce low voltages typically on the order of a few volts, and practical implementations require specialized contacts like slip rings or liquid metal brushes to manage high currents and minimize resistive losses.[34][35] These generators find applications in high-power, low-speed scenarios, particularly pulsed power systems for industrial processes like welding, electromagnetic forming, and fusion research, where they deliver short bursts of megawatt-level energy from inertial storage.[36][37] Modern variants include the Faraday wheel, an evolution of the disk with optimized magnetic flux paths for improved efficiency, and drum homopolar machines, which use a cylindrical rotor instead of a flat disk to enhance mechanical stability and current handling in large-scale systems. Recent developments include brushless synchronous homopolar generators, such as a 35 kW design for railway passenger cars without permanent magnets, enhancing efficiency and reliability.[38][34][39]Commutator-Based Dynamos
In commutator-based dynamos, the armature—comprising coiled conductors mounted on a rotating shaft—spins within a stationary magnetic field generated by field poles on the stator. As the armature rotates, its conductors cut through the magnetic flux lines, inducing an electromotive force (EMF) in the coils according to Faraday's law of electromagnetic induction; this EMF alternates in direction within each coil, producing alternating current (AC) internally due to the periodic reversal of flux linkage. The commutator, a segmented copper cylinder insulated with mica and rigidly attached to the armature, serves as a mechanical rectifier: its segments connect to the coil ends and reverse the electrical connections to the external circuit at precise intervals via stationary brushes, converting the internal AC into a unidirectional direct current (DC) output for practical use.[40] These dynamos are categorized by the arrangement of field windings for excitation and voltage control: series-wound, shunt-wound, and compound-wound. In series-wound types, the low-resistance field coils are connected in series with the armature, so the full load current passes through the field, generating strong flux that increases with load and results in rising voltage output, ideal for applications needing high starting torque like cranes but with poor regulation. Shunt-wound configurations place the field winding in parallel with the armature across the load, drawing a small constant excitation current (typically 2-5% of full load) to maintain stable flux, yielding good voltage regulation under constant speed but requiring external buildup for self-excitation. Compound-wound dynamos integrate both series and shunt fields—either cumulatively aiding each other for flat or rising voltage characteristics, or differentially opposing for dropping voltage and overload protection—offering versatile regulation for fluctuating loads in industrial settings.[41][40] The magnitude of the generated DC EMF follows the standard equation: where is the induced EMF (volts), is the number of magnetic poles, is the flux per pole (webers), is the armature speed (revolutions per minute), is the total number of armature conductors, and is the number of parallel current paths ( for lap windings, for wave windings). This derives from the total flux cut by all conductors in one minute divided by the paths: each conductor induces volts (with as flux density times length times velocity), and series connection in paths yields the full expression, assuming uniform flux and sinusoidal induction averaged to DC.[42][40] Brushes, usually carbon-graphite for their self-lubricating properties, low friction, and arc resistance, ride on the commutator surface to conduct the rectified DC to the external load while maintaining neutral plane alignment for smooth commutation. However, under load, armature reaction distorts the field, shifting the magnetic neutral plane from the geometric one, causing delayed current reversal in short-circuited coils during commutation; this induces reactance voltage, leading to sparking at brush contacts that erodes the commutator, generates heat, and reduces efficiency. Interpoles—narrow, series-connected auxiliary poles between main poles—counter this by producing a localized flux equal and opposite to the armature reaction, restoring neutrality and accelerating reversal to achieve sparkless operation even at 20-30% overload; improved materials like high-conductivity copper commutators and resilient brush compounds further minimize wear through better contact drop and friction control.[43][44] Although effective for early electrification, commutator-based dynamos have declined in prominence for bulk power generation owing to AC generators' superior reliability, as the latter avoid mechanical commutation's inherent sparking, brush wear, and high maintenance demands, while enabling efficient voltage transformation for transmission. They persist in niche low-voltage DC applications, such as welding equipment, traction systems, and battery charging, where direct DC output simplifies control without rectification losses.[45]Alternating Current Generators
Synchronous Generators
Synchronous generators, also known as alternators, are alternating current (AC) machines in which the rotor's rotational speed is precisely synchronized with the frequency of the generated electrical output. In this design, the rotor carries a direct current (DC) field winding that creates a rotating magnetic field, while the stationary stator houses three-phase armature windings that induce sinusoidal AC voltages as the rotor turns. Rotors are of two main types: cylindrical (non-salient pole) for high-speed applications, machined from solid steel forgings with field coils placed in slots and secured by wedges, and salient pole for low-speed applications like hydroelectric generators, featuring projecting poles mounted on a rotor hub.[46][47] Slip rings and brushes facilitate the delivery of DC excitation current to the rotor from an external source.[48] The output frequency of a synchronous generator is directly related to the rotor speed in revolutions per minute (RPM) and the number of poles , given by the formulawhere is in hertz (Hz). This relationship ensures that the generator produces a stable frequency matching the power system requirements, such as 60 Hz in North America, achieved at synchronous speeds like 3600 RPM for a 2-pole machine or 1800 RPM for a 4-pole machine.[48][49] Excitation of the rotor field winding is essential to establish the magnetic flux and can be achieved through several methods. In brushless excitation, a shaft-mounted pilot alternator supplies AC power to a rotating rectifier assembly (typically diode bridges) on the rotor, converting it to DC without slip rings, which reduces maintenance and improves reliability. Static excitation, on the other hand, uses solid-state rectifiers powered directly from the generator's stator terminals or an auxiliary source to supply DC via slip rings to the rotor. These methods allow precise control of the field current to regulate output voltage.[46][50] In power systems, synchronous generators play a critical role in maintaining grid stability through voltage regulation and synchronization. An automatic voltage regulator (AVR) monitors the terminal voltage and adjusts the excitation current to counteract variations due to load changes, ensuring constant output voltage and supporting reactive power requirements. Paralleling multiple units with the grid requires matching voltage, frequency, and phase sequence, often with a slight speed reduction (2-3%) to enable proportional load sharing among generators. Due to their ability to operate at fixed synchronous speeds with high efficiency—often exceeding 98% in large units—and inherent stability for frequency control, synchronous generators predominate in utility-scale power plants, including those driven by steam turbines (up to 1500 MW per unit), gas turbines, and hydroelectric installations.[48][50]