Recent from talks
All channels
Be the first to start a discussion here.
Be the first to start a discussion here.
Be the first to start a discussion here.
Be the first to start a discussion here.
Welcome to the community hub built to collect knowledge and have discussions related to 1000 (number).
Nothing was collected or created yet.
1000 (number)
View on Wikipediafrom Wikipedia
| ||||
|---|---|---|---|---|
| Cardinal | one thousand | |||
| Ordinal | 1000th (one thousandth) | |||
| Factorization | 23 × 53 | |||
| Divisors | 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, 1000 | |||
| Greek numeral | ,Α´ | |||
| Roman numeral | M, m | |||
| Roman numeral (unicode) | M, m, ↀ | |||
| Unicode symbol | ↀ | |||
| Greek prefix | chilia | |||
| Latin prefix | milli | |||
| Binary | 11111010002 | |||
| Ternary | 11010013 | |||
| Senary | 43446 | |||
| Octal | 17508 | |||
| Duodecimal | 6B412 | |||
| Hexadecimal | 3E816 | |||
| Tamil | ௲ | |||
| Chinese | 千 | |||
| Punjabi | ੧੦੦੦ | |||
| Devanagari | १००० | |||
| Armenian | Ռ | |||
| Egyptian hieroglyph | 𓆼 | |||
1000 or one thousand is the natural number following 999 and preceding 1001. In most English-speaking countries, it can be written with or without a comma or sometimes a period separating the thousands digit: 1,000.
A group of one thousand units is sometimes known, from Ancient Greek, as a chiliad.[1] A period of one thousand years may be known as a chiliad or, more often from Latin, as a millennium. The number 1000 is also sometimes described as a short thousand in medieval contexts where it is necessary to distinguish the Germanic concept of 1200 as a long thousand. It is the first 4-digit integer.
Notation
[edit]- The decimal representation for one thousand is
- 1000—a one followed by three zeros, in the general notation;
- 1 × 103—in engineering notation, which for this number coincides with:
- 1 × 103 exactly—in scientific normalized exponential notation;
- 1 E+3 exactly—in scientific E notation.
- The SI prefix for a thousand units is "kilo-", abbreviated to "k"—for instance, a kilogram or "kg" is a thousand grams. This is sometimes extended to non-SI contexts, such as "ka" (kiloannum) being used as a shorthand for periods of 1000 years. In computer science, however, "kilo-" is used more loosely to mean 2 to the 10th power (1024 or 210).
- In the SI writing style, a non-breaking space can be used as a thousands separator, i.e., to separate the digits of a number at every power of 1000.
- Multiples of thousands are occasionally represented by replacing their last three zeros with the letter "K" or "k": for instance, writing "$30k" for $30 000 or using "Y2K" to denote the Year 2000 computer problem.
- A thousand units of currency, especially dollars or pounds, are colloquially called a grand. In the United States, this is sometimes abbreviated with a "G" suffix.
In mathematics
[edit]Numbers in the range 1001–1999
[edit]1001 to 1099
[edit]- 1001 = sphenic number (7 × 11 × 13), pentagonal number, pentatope number, palindromic number
- 1002 = sphenic number, Mertens function zero, abundant number, number of partitions of 22
- 1003 = the product of some prime p and the pth prime, namely p = 17.
- 1004 = heptanacci number[3]
- 1005 = Mertens function zero, decagonal pyramidal number[4]
- 1006 = semiprime, product of two distinct isolated primes (2 and 503); unusual number; square-free number; number of compositions (ordered partitions) of 22 into squares; sum of two distinct pentatope numbers (5 and 1001); number of undirected Hamiltonian paths in 4 by 5 square grid graph;[5] record gap between twin primes;[6] number that is the sum of 7 positive 5th powers.[7] In decimal: equidigital number; when turned around, the number looks like a prime, 9001; its cube can be concatenated from other cubes, 1_0_1_8_1_0_8_216 ("_" indicates concatenation, 0 = 03, 1 = 13, 8 = 23, 216 = 63)[8]
- 1007 = number that is the sum of 8 positive 5th powers[9]
- 1008 = divisible by the number of primes below it
- 1009 = smallest four-digit prime, palindromic in bases 11, 15, 19, 24 and 28: (83811, 47415, 2F219, 1I124, 18128). It is also a Lucky prime and Chen prime.
- 1010 = 103 + 10,[10] Mertens function zero
- 1011 = the largest n such that 2n contains 101 and does not contain 11011, Harshad number in bases 5, 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65, 70, 75 (and 202 other bases), number of partitions of 1 into reciprocals of positive integers <= 16 Egyptian fraction[11]
- 1012 = ternary number, (3210) quadruple triangular number (triangular number is 253),[12] number of partitions of 1 into reciprocals of positive integers <= 17 Egyptian fraction[11]
- 1013 = Sophie Germain prime,[13] centered square number,[14] Mertens function zero
- 1014 = 210-10,[15] Mertens function zero, sum of the nontriangular numbers between successive triangular numbers 78 and 91[16]
- 1015 = square pyramidal number[17]
- 1016 = member of the Mian–Chowla sequence,[18] stella octangula number, number of surface points on a cube with edge-length 14[19]
- 1017 = generalized triacontagonal number[20]
- 1018 = Mertens function zero, 101816 + 1 is prime[21]
- 1019 = Sophie Germain prime,[13] safe prime,[22] Chen prime
- 1020 = polydivisible number
- 1021 = twin prime with 1019. It is also a Lucky prime.
- 1022 = Friedman number
- 1023 = sum of five consecutive primes (193 + 197 + 199 + 211 + 223);[23] the number of three-dimensional polycubes with 7 cells;[24] number of elements in a 9-simplex; highest number one can count to on one's fingers using binary; magic number used in Global Positioning System signals.
- 1024 = 322 = 45 = 210, the number of bytes in a kilobyte (in 1999, the IEC coined kibibyte to use for 1024 with kilobyte being 1000, but this convention has not been widely adopted). 1024 is the smallest 4-digit square and also a Friedman number.
- 1025 = Proth number 210 + 1; member of Moser–de Bruijn sequence, because its base-4 representation (1000014) contains only digits 0 and 1, or it's a sum of distinct powers of 4 (45 + 40); Jacobsthal-Lucas number; hypotenuse of primitive Pythagorean triangle
- 1026 = sum of two distinct powers of 2 (1024 + 2)
- 1027 = sum of the squares of the first eight primes; can be written from base 2 to base 18 using only the digits 0 to 9.
- 1028 = sum of totient function for first 58 integers; can be written from base 2 to base 18 using only the digits 0 to 9; number of primes <= 213.[25]
- 1029 = can be written from base 2 to base 18 using only the digits 0 to 9.
- 1030 = generalized heptagonal number
- 1031 = exponent and number of ones for the fifth base-10 repunit prime,[26] Sophie Germain prime,[13] super-prime, Chen prime
- 1032 = sum of two distinct powers of 2 (1024 + 8)
- 1033 = emirp, twin prime with 1031
- 1034 = sum of 12 positive 9th powers[27]
- 1035 = 45th triangular number,[28] hexagonal number[29]
- 1036 = central polygonal number[30]
- 1037 = number in E-toothpick sequence[31]
- 1038 = even integer that is an unordered sum of two primes in exactly 40 ways[32]
- 1039 = prime of the form 8n+7,[33] number of partitions of 30 that do not contain 1 as a part,[34] Chen prime, Lucky prime
- 1040 = 45 + 42: sum of distinct powers of 4.[35] The number of pieces that could be seen in a 6 × 6 × 6× 6 Rubik's Tesseract.
- 1041 = sum of 11 positive 5th powers[36]
- 1042 = sum of 12 positive 5th powers[37]
- 1043 = number whose sum of even digits and sum of odd digits are even[38]
- 1044 = sum of distinct powers of 4[35]
- 1045 = octagonal number[39]
- 1046 = coefficient of f(q) (3rd order mock theta function)[40]
- 1047 = number of ways to split a strict composition of 18 into contiguous subsequences that have the same sum[41]
- 1048 = number of partitions of 27 into squarefree parts[42]
- 1049 = Sophie Germain prime,[13] highly cototient number,[43] Chen prime
- 1050 = 10508 to decimal becomes a pronic number (55210),[44] number of parts in all partitions of 29 into distinct parts[45]
- 1051 = centered pentagonal number,[46] centered decagonal number
- 1052 = sum of 9 positive 6th powers[47]
- 1053 = triangular matchstick number[48]
- 1054 = centered triangular number[49]
- 1055 = sum of 12 positive 6th powers[50]
- 1056 = pronic number[51]
- 1057 = central polygonal number[52]
- 1058 = sum of 4 positive 5th powers,[53] area of a square with diagonal 46[54]
- 1059 = number n such that n4 is written in the form of a sum of four positive 4th powers[55]
- 1060 = sum of the first twenty-five primes from 2 through 97 (the number of primes less than 100),[56] and sixth sum of 10 consecutive primes, starting with 23 through 131.[57]
- 1061 = emirp, twin prime with 1063, number of prime numbers between 1000 and 10000 (or, number of four-digit primes in decimal representation)[58]
- 1062 = number that is not the sum of two palindromes[59]
- 1063 = super-prime, sum of seven consecutive primes (137 + 139 + 149 + 151 + 157 + 163 + 167); near-wall-sun-sun prime.[60] It is also a twin prime with 1061.
- 1064 = sum of two positive cubes[61]
- 1065 = generalized duodecagonal[62]
- 1066 = number whose sum of their divisors is a square[63]
- 1067 = number of strict integer partitions of 45 in which are empty or have smallest part not dividing the other ones[64]
- 1068 = number that is the sum of 7 positive 5th powers,[7] total number of parts in all partitions of 15[65]
- 1069 = emirp[66]
- 1070 = number that is the sum of 9 positive 5th powers[67]
- 1071 = heptagonal number[68]
- 1072 = centered heptagonal number[69]
- 1073 = number that is the sum of 12 positive 5th powers[37]
- 1074 = number that is not the sum of two palindromes[59]
- 1075 = number non-sum of two palindromes[59]
- 1076 = number of strict trees weight 11[70]
- 1077 = number where 7 outnumbers every other digit in the number[71]
- 1078 = Euler transform of negative integers[72]
- 1079 = every positive integer is the sum of at most 1079 tenth powers.
- 1080 = pentagonal number,[73] largely composite number[74]
- 1081 = 46th triangular number,[28] member of Padovan sequence[75]
- 1082 = central polygonal number[30]
- 1083 = three-quarter square,[76] number of partitions of 53 into prime parts[77]
- 1084 = third spoke of a hexagonal spiral,[78] 108464 + 1 is prime
- 1085 = number of partitions of n into distinct parts > or = 2[79]
- 1086 = Smith number,[80] sum of totient function for first 59 integers
- 1087 = super-prime, cousin prime, lucky prime[81]
- 1088 = octo-triangular number, (triangular number result being 136)[82] sum of two distinct powers of 2, (1024 + 64)[83] number that is divisible by exactly seven primes with the inclusion of multiplicity[84]
- 1089 = 332, nonagonal number, centered octagonal number, first natural number whose digits in its decimal representation get reversed when multiplied by 9.[85]
- 1090 = sum of 5 positive 5th powers[86]
- 1091 = cousin prime and twin prime with 1093
- 1092 = divisible by the number of primes below it
- 1093 = the smallest Wieferich prime (the only other known Wieferich prime is 3511[87]), twin prime with 1091 and star number[88]
- 1094 = sum of 9 positive 5th powers,[67] 109464 + 1 is prime
- 1095 = sum of 10 positive 5th powers,[89] number that is not the sum of two palindromes
- 1096 = hendecagonal number,[90] number of strict solid partitions of 18[91]
- 1097 = emirp,[66] Chen prime
- 1098 = multiple of 9 containing digit 9 in its base-10 representation[92]
- 1099 = number where 9 outnumbers every other digit[93]
1100 to 1199
[edit]- 1100 = number of partitions of 61 into distinct squarefree parts[94]
- 1101 = pinwheel number[95]
- 1102 = sum of totient function for first 60 integers
- 1103 = Sophie Germain prime,[13] balanced prime[96]
- 1104 = Keith number[97]
- 1105 = 332 + 42 = 322 + 92 = 312 + 122 = 232 + 242, Carmichael number,[98] magic constant of n × n normal magic square and n-queens problem for n = 13, decagonal number,[99] centered square number,[14] Fermat pseudoprime[100]
- 1106 = number of regions into which the plane is divided when drawing 24 ellipses[101]
- 1107 = number of non-isomorphic strict T0 multiset partitions of weight 8[102]
- 1108 = number k such that k64 + 1 is prime
- 1109 = Friedlander-Iwaniec prime,[103] Chen prime
- 1110 = k such that 2k + 3 is prime[104]
- 1111 = 11 × 101, palindrome that is a product of two palindromic primes,[105] repunit[106]
- 1112 = k such that 9k - 2 is a prime[107]
- 1113 = number of strict partions of 40[108]
- 1114 = number of ways to write 22 as an orderless product of orderless sums[109]
- 1115 = number of partitions of 27 into a prime number of parts[110]
- 1116 = divisible by the number of primes below it
- 1117 = number of diagonally symmetric polyominoes with 16 cells,[111] Chen prime
- 1118 = number of unimodular 2 × 2 matrices having all terms in {0,1,...,21}[112]
- 1119 = number of bipartite graphs with 9 nodes[113]
- 1120 = number k such that k64 + 1 is prime
- 1121 = number of squares between 342 and 344.[114]
- 1122 = pronic number,[51] divisible by the number of primes below it
- 1123 = balanced prime[96]
- 1124 = Leyland number[115] using 2 & 10 (210 + 102), spy number
- 1125 = Achilles number
- 1126 = number of 2 × 2 non-singular integer matrices with entries from {0, 1, 2, 3, 4, 5}[116]
- 1127 = maximal number of pieces that can be obtained by cutting an annulus with 46 cuts[117]
- 1128 = 47th triangular number,[28] 24th hexagonal number,[29] divisible by the number of primes below it (188 × 6).[118] 1128 is the dimensional representation of the largest vertex operator algebra with central charge of 24, D24.[119]
- 1129 = number of lattice points inside a circle of radius 19[120]
- 1130 = skiponacci number[121]
- 1131 = number of edges in the hexagonal triangle T(26)[122]
- 1132 = number of simple unlabeled graphs with 9 nodes of 2 colors whose components are complete graphs[123]
- 1133 = number of primitive subsequences of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}[124]
- 1134 = divisible by the number of primes below it, triangular matchstick number[48]
- 1135 = centered triangular number[125]
- 1136 = number of independent vertex sets and vertex covers in the 7-sunlet graph[126]
- 1137 = sum of values of vertices at level 5 of the hyperbolic Pascal pyramid[127]
- 1138 = recurring number in the works of George Lucas and his companies, beginning with his first feature film – THX 1138; particularly, a special code for Easter eggs on Star Wars DVDs.
- 1139 = wiener index of the windmill graph D(3,17)[128]
- 1140 = tetrahedral number[129]
- 1141 = 7-Knödel number[130]
- 1142 = n such that n32 + 1 is prime,[131] spy number
- 1143 = number of set partitions of 8 elements with 2 connectors[132]
- 1144 is not the sum of a pair of twin primes[133]
- 1145 = 5-Knödel number[134]
- 1146 is not the sum of a pair of twin primes[133]
- 1147 = 31 × 37 (a product of 2 successive primes)[135]
- 1148 is not the sum of a pair of twin primes[133]
- 1149 = a product of two palindromic primes[136]
- 1150 = number of 11-iamonds without bilateral symmetry.[137]
- 1151 = first prime following a prime gap of 22,[138] Chen prime
- 1152 = highly totient number,[139] 3-smooth number (27×32), area of a square with diagonal 48,[54] Achilles number
- 1153 = super-prime, Proth prime[140]
- 1154 = 2 × 242 + 2 = number of points on surface of tetrahedron with edge length 24[141]
- 1155 = number of edges in the join of two cycle graphs, both of order 33,[142] product of first four odd primes (3*5*7*11)
- 1156 = 342, octahedral number,[143] centered pentagonal number,[46] centered hendecagonal number.[144]
- 1157 = smallest number that can be written as n^2+1 without any prime factors that can be written as a^2+1.[145]
- 1158 = number of points on surface of octahedron with edge length 17[146]
- 1159 = member of the Mian–Chowla sequence,[18] a centered octahedral number[147]
- 1160 = octagonal number[148]
- 1161 = sum of the first twenty-six primes
- 1162 = pentagonal number,[73] sum of totient function for first 61 integers
- 1163 = smallest prime > 342.[149] See Legendre's conjecture. Chen prime.
- 1164 = number of chains of multisets that partition a normal multiset of weight 8, where a multiset is normal if it spans an initial interval of positive integers[150]
- 1165 = 5-Knödel number[134]
- 1166 = heptagonal pyramidal number[151]
- 1167 = number of rational numbers which can be constructed from the set of integers between 1 and 43[152]
- 1168 = antisigma(49)[153]
- 1169 = highly cototient number[43]
- 1170 = highest possible score in a National Academic Quiz Tournaments (NAQT) match
- 1171 = super-prime
- 1172 = number of subsets of first 14 integers that have a sum divisible by 14[154]
- 1173 = number of simple triangulation on a plane with 9 nodes[155]
- 1174 = number of widely totally strongly normal compositions of 16
- 1175 = maximal number of pieces that can be obtained by cutting an annulus with 47 cuts[117]
- 1176 = 48th triangular number[28]
- 1177 = heptagonal number[68]
- 1178 = number of surface points on a cube with edge-length 15[19]
- 1179 = number of different permanents of binary 7*7 matrices[156]
- 1180 = smallest number of non-integral partitions into non-integral power >1000.[157]
- 1181 = smallest k over 1000 such that 8*10^k-49 is prime.[158]
- 1182 = number of necklaces possible with 14 beads of 2 colors (that cannot be turned over)[159]
- 1183 = pentagonal pyramidal number
- 1184 = amicable number with 1210[160]
- 1185 = number of partitions of 45 into pairwise relatively prime parts[161]
- 1186 = number of diagonally symmetric polyominoes with 15 cells,[111] number of partitions of 54 into prime parts
- 1187 = safe prime,[22] Stern prime,[162] balanced prime,[96] Chen prime
- 1188 = first 4 digit multiple of 18 to contain 18[163]
- 1189 = number of squares between 352 and 354.[114]
- 1190 = pronic number,[51] number of cards to build a 28-tier house of cards[164]
- 1191 = 352 - 35 + 1 = H35 (the 35th Hogben number)[165]
- 1192 = sum of totient function for first 62 integers
- 1193 = a number such that 41193 - 31193 is prime, Chen prime
- 1194 = number of permutations that can be reached with 8 moves of 2 bishops and 1 rook on a 3 × 3 chessboard[166]
- 1195 = smallest four-digit number for which a−1(n) is an integer is a(n) is 2*a(n-1) - (-1)n[167]
- 1196 = [168]
- 1197 = pinwheel number[95]
- 1198 = centered heptagonal number[69]
- 1199 = area of the 20th conjoined trapezoid[169]
1200 to 1299
[edit]- 1200 = the long thousand, ten "long hundreds" of 120 each, the traditional reckoning of large numbers in Germanic languages, the number of households the Nielsen ratings sample,[170] number k such that k64 + 1 is prime
- 1201 = centered square number,[14] super-prime, centered decagonal number
- 1202 = number of regions the plane is divided into by 25 ellipses[101]
- 1203: first 4 digit number in the coordinating sequence for the (2,6,∞) tiling of the hyperbolic plane[171]
- 1204: magic constant of a 7 × 7 × 7 magic cube[172]
- 1205 = number of partitions of 28 such that the number of odd parts is a part[173]
- 1206 = 29-gonal number [174]
- 1207 = composite de Polignac number[175]
- 1208 = number of strict chains of divisors starting with the superprimorial A006939(3)[176]
- 1209 = The product of all ordered non-empty subsets of {3,1} if {a,b} is a||b: 1209=1*3*13*31
- 1210 = amicable number with 1184[177]
- 1211 = composite de Polignac number[175]
- 1212 = , where is the number of partions of [178]
- 1213 = emirp
- 1214 = sum of first 39 composite numbers,[179] spy number
- 1215 = number of edges in the hexagonal triangle T(27)[122]
- 1216 = nonagonal number[180]
- 1217 = super-prime, Proth prime[140]
- 1218 = triangular matchstick number[48]
- 1219 = Mertens function zero, centered triangular number[125]
- 1220 = Mertens function zero, number of binary vectors of length 16 containing no singletons[181]
- 1221 = product of the first two digit, and three digit repdigit
- 1222 = hexagonal pyramidal number
- 1223 = Sophie Germain prime,[13] balanced prime, 200th prime number[96]
- 1224 = number of edges in the join of two cycle graphs, both of order 34[142]
- 1225 = 352, 49th triangular number,[28] 2nd nontrivial square triangular number,[182] 25th hexagonal number,[29] and the smallest number >1 to be all three.[183] Additionally a centered octagonal number,[184] icosienneagonal,[185] hexacontagonal,[186] and hecatonicositetragonal (124-gonal) number, and the sum of 5 consecutive odd cubes (13 + 33 + 53 + 73 + 93)
- 1226 = number of rooted identity trees with 15 nodes [187]
- 1227 = smallest number representable as the sum of 3 triangular numbers in 27 ways[188]
- 1228 = sum of totient function for first 63 integers
- 1229 = Sophie Germain prime,[13] number of primes under 10,000, emirp
- 1230 = the Mahonian number: T(9, 6)[189]
- 1231 = smallest mountain emirp, as 121, smallest mountain number is 11 × 11
- 1232 = number of labeled ordered set of partitions of a 7-set into odd parts[190]
- 1233 = 122 + 332
- 1234 = number of parts in all partitions of 30 into distinct parts,[45] smallest whole number containing all numbers from 1 to 4
- 1235 = excluding duplicates, contains the first four Fibonacci numbers [191]
- 1236 = 617 + 619: sum of twin prime pair[192]
- 1237 = prime of the form 2p-1
- 1238 = number of partitions of 31 that do not contain 1 as a part[34]
- 1239 = toothpick number in 3D[193]
- 1240 = square pyramidal number[17]
- 1241 = centered cube number,[194] spy number
- 1242 = decagonal number[99]
- 1243 = composite de Polignac number[175]
- 1244 = number of complete partitions of 25[195]
- 1245 = Number of labeled spanning intersecting set-systems on 5 vertices.[196]
- 1246 = number of partitions of 38 such that no part occurs more than once[197]
- 1247 = pentagonal number[73]
- 1248 = the first four powers of 2 concatenated together
- 1249 = emirp, trimorphic number[198]
- 1250 = area of a square with diagonal 50[54]
- 1251 = 2 × 252 + 1 = number of different 2 × 2 determinants with integer entries from 0 to 25[199]
- 1252 = 2 × 252 + 2 = number of points on surface of tetrahedron with edgelength 25[141]
- 1253 = number of partitions of 23 with at least one distinct part[200]
- 1254 = number of partitions of 23 into relatively prime parts[201]
- 1255 = Mertens function zero, number of ways to write 23 as an orderless product of orderless sums,[109] number of partitions of 23[202]
- 1256 = 1 × 2 × (52)2 + 6,[203] Mertens function zero
- 1257 = number of lattice points inside a circle of radius 20[120]
- 1258 = 1 × 2 × (52)2 + 8,[203] Mertens function zero
- 1259 = highly cototient number[43]
- 1260 = the 16th highly composite number,[204] pronic number,[51] the smallest vampire number,[205] sum of totient function for first 64 integers, number of strict partions of 41[108] and appears twice in the Book of Revelation
- 1261 = star number,[88] Mertens function zero
- 1262 = maximal number of regions the plane is divided into by drawing 36 circles[206]
- 1263 = rounded total surface area of a regular tetrahedron with edge length 27[207]
- 1264 = sum of the first 27 primes
- 1265 = number of rooted trees with 43 vertices in which vertices at the same level have the same degree[208]
- 1266 = centered pentagonal number,[46] Mertens function zero
- 1267 = 7-Knödel number[130]
- 1268 = number of partitions of 37 into prime power parts[209]
- 1269 = least number of triangles of the Spiral of Theodorus to complete 11 revolutions[210]
- 1270 = 25 + 24×26 + 23×27,[211] Mertens function zero
- 1271 = sum of first 40 composite numbers[179]
- 1272 = sum of first 41 nonprimes[212]
- 1273 = 19 × 67 = 19 × prime(19)[213]
- 1274 = sum of the nontriangular numbers between successive triangular numbers
- 1275 = 50th triangular number,[28] equivalently the sum of the first 50 natural numbers
- 1276 = number of irredundant sets in the 25-cocktail party graph[214]
- 1277 = the start of a prime constellation of length 9 (a "prime nonuple")
- 1278 = number of Narayana's cows and calves after 20 years[215]
- 1279 = Mertens function zero, Mersenne prime exponent
- 1280 = Mertens function zero, number of parts in all compositions of 9[216]
- 1281 = octagonal number[148]
- 1282 = Mertens function zero, number of partitions of 46 into pairwise relatively prime parts[161]
- 1283 = safe prime[22]
- 1284 = 641 + 643: sum of twin prime pair[192]
- 1285 = Mertens function zero, number of free nonominoes, number of parallelogram polyominoes with 10 cells.[217]
- 1286 = number of inequivalent connected planar figures that can be formed from five 1 X 2 rectangles (or dominoes) such that each pair of touching rectangles shares exactly one edge, of length 1, and the adjacency graph of the rectangles is a tree[218]
- 1287 = [219]
- 1288 = heptagonal number[68]
- 1289 = Sophie Germain prime,[13] Mertens function zero
- 1290 = , average of a twin prime pair[220]
- 1291 = largest prime < 64,[221] Mertens function zero
- 1292 = number such that phi(1292) = phi(sigma(1292)),[222] Mertens function zero
- 1293 = [223]
- 1294 = rounded volume of a regular octahedron with edge length 14[224]
- 1295 = number of edges in the join of two cycle graphs, both of order 35[142]
- 1296 = 362 = 64, sum of the cubes of the first eight positive integers, the number of rectangles on a normal 8 × 8 chessboard, also the maximum font size allowed in Adobe InDesign, number of combinations of 2 characters(00-ZZ)
- 1297 = super-prime, Mertens function zero, pinwheel number[95]
- 1298 = number of partitions of 55 into prime parts
- 1299 = Mertens function zero, number of partitions of 52 such that the smallest part is greater than or equal to number of parts[225]
1300 to 1399
[edit]- 1300 = Sum of the first 4 fifth powers, Mertens function zero, largest possible win margin in an NAQT match; smallest even odd-factor hyperperfect number
- 1301 = centered square number,[14] Honaker prime,[226] number of trees with 13 unlabeled nodes[227]
- 1302 = Mertens function zero, number of edges in the hexagonal triangle T(28)[122]
- 1303 = prime of form 21n+1 and 31n+1[228][229]
- 1304 = sum of 13046 and 1304 9 which is 328+976
- 1305 = triangular matchstick number[48]
- 1306 = Mertens function zero. In base 10, raising the digits of 1306 to powers of successive integers equals itself: 1306 = 11 + 32 + 03 + 64. 135, 175, 518, and 598 also have this property. Centered triangular number.[125]
- 1307 = safe prime[22]
- 1308 = sum of totient function for first 65 integers
- 1309 = the first sphenic number followed by two consecutive such number
- 1310 = smallest number in the middle of a set of three sphenic numbers
- 1311 = number of integer partitions of 32 with no part dividing all the others[230]
- 1312 = member of the Mian-Chowla sequence;[18]
- 1313 = sum of all parts of all partitions of 14 [231]
- 1314 = number of integer partitions of 41 whose distinct parts are connected[232]
- 1315 = 10^(2n+1)-7*10^n-1 is prime.[233]
- 1316 = Euler transformation of sigma(11)[234]
- 1317 = 1317 Only odd four digit number to divide the concatenation of all number up to itself in base 25[235]
- 1318512 + 1 is prime,[236] Mertens function zero
- 1319 = safe prime[22]
- 1320 = 659 + 661: sum of twin prime pair[192]
- 1321 = Friedlander-Iwaniec prime[103]
- 1322 = area of the 21st conjoined trapezoid[169]
- 1323 = Achilles number
- 1324 = if D(n) is the nth representation of 1, 2 arranged lexicographically. 1324 is the first non-1 number which is D(D(x))[237]
- 1325 = Markov number,[238] centered tetrahedral number[239]
- 1326 = 51st triangular number,[28] hexagonal number,[29] Mertens function zero
- 1327 = first prime followed by 33 consecutive composite numbers
- 1328 = sum of totient function for first 66 integers
- 1329 = Mertens function zero, sum of first 41 composite numbers[179]
- 1330 = tetrahedral number,[129] forms a Ruth–Aaron pair with 1331 under second definition
- 1331 = 113, centered heptagonal number,[69] forms a Ruth–Aaron pair with 1330 under second definition. This is the only non-trivial cube of the form x2 + x − 1, for x = 36.
- 1332 = pronic number[51]
- 1333 = 372 - 37 + 1 = H37 (the 37th Hogben number)[165]
- 1334 = maximal number of regions the plane is divided into by drawing 37 circles[206]
- 1335 = pentagonal number,[73] Mertens function zero
- 1336 = sum of gcd(x, y) for 1 <= x, y <= 24,[240] Mertens function zero
- 1337 = Used in the novel form of spelling called leet. Approximate melting point of gold in kelvins.
- 1338 = atomic number of the noble element of period 18,[241] Mertens function zero
- 1339 = First 4 digit number to appear twice in the sequence of sum of cubes of primes dividing n[242]
- 1340 = k such that 5 × 2k - 1 is prime[243]
- 1341 = First mountain number with 2 jumps of more than one.
- 1342 = ,[168] Mertens function zero
- 1343 = cropped hexagone[244]
- 1344 = 372 - 52, the only way to express 1344 as a difference of prime squares[245]
- 1345 = k such that k, k+1 and k+2 are products of two primes[246]
- 1346 = number of locally disjointed rooted trees with 10 nodes[247]
- 1347 = concatenation of first 4 Lucas numbers [248]
- 1348 = number of ways to stack 22 pennies such that every penny is in a stack of one or two[249]
- 1349 = Stern-Jacobsthal number[250]
- 1350 = nonagonal number[180]
- 1351 = number of partitions of 28 into a prime number of parts[110]
- 1352 = number of surface points on a cube with edge-length 16,[19] Achilles number
- 1353 = 2 × 262 + 1 = number of different 2 × 2 determinants with integer entries from 0 to 26[199]
- 1354 = 2 × 262 + 2 = number of points on surface of tetrahedron with edgelength 26[141]
- 1355 appears for the first time in the Recamán's sequence at n = 325,374,625,245.[251] Or in other words A057167(1355) = 325,374,625,245[252][253]
- 1356 is not the sum of a pair of twin primes[133]
- 1357 = number of nonnegative solutions to x2 + y2 ≤ 412[254]
- 1358 = rounded total surface area of a regular tetrahedron with edge length 28[207]
- 1359 is the 42d term of Flavius Josephus's sieve[255]
- 1360 = 372 - 32, the only way to express 1360 as a difference of prime squares[245]
- 1361 = first prime following a prime gap of 34,[138] centered decagonal number, 3rd Mills' prime, Honaker prime[226]
- 1362 = number of achiral integer partitions of 48[256]
- 1363 = the number of ways to modify a circular arrangement of 14 objects by swapping one or more adjacent pairs[257]
- 1364 = Lucas number[258]
- 1365 = pentatope number[259]
- 1366 = Arima number, after Yoriyuki Arima who in 1769 constructed this sequence as the number of moves of the outer ring in the optimal solution for the Chinese Rings puzzle[260]
- 1367 = safe prime,[22] balanced prime, sum of three, nine, and eleven consecutive primes (449 + 457 + 461, 131 + 137 + 139 + 149 + 151 + 157 + 163 + 167 + 173, and 101 + 103 + 107 + 109 + 113 + 127 + 131 + 137 + 139 + 149 + 151),[96]
- 1368 = number of edges in the join of two cycle graphs, both of order 36[142]
- 1369 = 372, centered octagonal number[184]
- 1370 = σ2(37): sum of squares of divisors of 37[261]
- 1371 = sum of the first 28 primes
- 1372 = Achilles number
- 1373 = number of lattice points inside a circle of radius 21[120]
- 1374 = number of unimodular 2 × 2 matrices having all terms in {0,1,...,23}[112]
- 1375 = decagonal pyramidal number[4]
- 1376 = primitive abundant number (abundant number all of whose proper divisors are deficient numbers)[262]
- 1377 = maximal number of pieces that can be obtained by cutting an annulus with 51 cuts[117]
- 1378 = 52nd triangular number[28]
- 1379 = magic constant of n × n normal magic square and n-queens problem for n = 14.
- 1380 = number of 8-step mappings with 4 inputs[263]
- 1381 = centered pentagonal number[46] Mertens function zero
- 1382 = first 4 digit tetrachi number [264]
- 1383 = 3 × 461. 101383 + 7 is prime[265]
- 1384 = [168]
- 1385 = up/down number[266]
- 1386 = octagonal pyramidal number[267]
- 1387 = 5th Fermat pseudoprime of base 2,[268] 22nd centered hexagonal number and the 19th decagonal number,[99] second Super-Poulet number.[269]
- 1388 = 4 × 192 - 3 × 19 + 1 and is therefore on the x-axis of Ulams spiral[270]
- 1389 = sum of first 42 composite numbers[179]
- 1390 = sum of first 43 nonprimes[212]
- 1391 = number of rational numbers which can be constructed from the set of integers between 1 and 47[152]
- 1392 = number of edges in the hexagonal triangle T(29)[122]
- 1393 = 7-Knödel number[130]
- 1394 = sum of totient function for first 67 integers
- 1395 = vampire number,[205] member of the Mian–Chowla sequence[18] triangular matchstick number[48]
- 1396 = centered triangular number[125]
- 1397 = [271]
- 1398 = number of integer partitions of 40 whose distinct parts are connected[232]
- 1399 = emirp[272]
1400 to 1499
[edit]- 1400 = number of sum-free subsets of {1, ..., 15}[273]
- 1401 = pinwheel number[95]
- 1402 = number of integer partitions of 48 whose augmented differences are distinct,[274] number of signed trees with 8 nodes[275]
- 1403 = smallest x such that M(x) = 11, where M() is Mertens function[276]
- 1404 = heptagonal number[68]
- 1405 = 262 + 272, 72 + 82 + ... + 162, centered square number[14]
- 1406 = pronic number,[51] semi-meandric number[277]
- 1407 = 382 - 38 + 1 = H38 (the 38th Hogben number)[165]
- 1408 = maximal number of regions the plane is divided into by drawing 38 circles[206]
- 1409 = super-prime, Sophie Germain prime,[13] smallest number whose eighth power is the sum of 8 eighth powers, Proth prime[140]
- 1410 = denominator of the 46th Bernoulli number[278]
- 1411 = LS(41)[279]
- 1412 = LS(42),[279] spy number
- 1413 = LS(43)[279]
- 1414 = smallest composite that when added to sum of prime factors reaches a prime after 27 iterations[280]
- 1415 = the Mahonian number: T(8, 8)[189]
- 1416 = LS(46)[279]
- 1417 = number of partitions of 32 in which the number of parts divides 32[281]
- 1418 = smallest x such that M(x) = 13, where M() is Mertens function[276]
- 1419 = Zeisel number[282]
- 1420 = Number of partitions of 56 into prime parts
- 1421 = maximum dimension of Euclidean spaces which suffice for every smooth compact Riemannian 29-manifold to be realizable as a sub-manifold,[283] spy number
- 1422 = number of partitions of 15 with two parts marked[284]
- 1423 = 200 + 1223 and the 200th prime is 1223[285]
- 1424 = number of nonnegative solutions to x2 + y2 ≤ 422[254]
- 1425 = self-descriptive number in base 5
- 1426 = sum of totient function for first 68 integers, pentagonal number,[73] number of strict partions of 42[108]
- 1427 = twin prime together with 1429[286]
- 1428 = number of complete ternary trees with 6 internal nodes, or 18 edges[287]
- 1429 = number of partitions of 53 such that the smallest part is greater than or equal to number of parts[225]
- 1430 = Catalan number[288]
- 1431 = 53rd triangular number,[28] hexagonal number[29]
- 1432 = member of Padovan sequence[75]
- 1433 = super-prime, Honaker prime,[226] typical port used for remote connections to Microsoft SQL Server databases
- 1434 = rounded volume of a regular tetrahedron with edge length 23[289]
- 1435 = vampire number;[205] the standard railway gauge in millimetres, equivalent to 4 feet 8+1⁄2 inches (1.435 m)
- 1436 = discriminant of a totally real cubic field[290]
- 1437 = smallest number of complexity 20: smallest number requiring 20 1's to build using +, * and ^[291]
- 1438 = k such that 5 × 2k - 1 is prime[243]
- 1439 = Sophie Germain prime,[13] safe prime[22]
- 1440 = a highly totient number,[139] a largely composite number[74] and a 481-gonal number. Also, the number of minutes in one day, the size in kibibytes (units of 1,024 bytes) of a standard 3+1/2 floppy disk, and the horizontal resolution of WXGA(II) computer displays
- 1441 = star number[88]
- 1442 = number of parts in all partitions of 31 into distinct parts[45]
- 1443 = the sum of the second trio of three-digit permutable primes in decimal: 337, 373, and 733. Also the number of edges in the join of two cycle graphs, both of order 37[142]
- 1444 = 382, smallest pandigital number in Roman numerals
- 1445 = [292]
- 1446 = number of points on surface of octahedron with edge length 19[146]
- 1447 = super-prime, happy number
- 1448 = number k such that phi(prime(k)) is a square[293]
- 1449 = Stella octangula number
- 1450 = σ2(34): sum of squares of divisors of 34[261]
- 1451 = Sophie Germain prime[13]
- 1452 = first Zagreb index of the complete graph K12[294]
- 1453 = Sexy prime with 1459
- 1454 = 3 × 222 + 2 = number of points on surface of square pyramid of side-length 22[295]
- 1455 = k such that geometric mean of phi(k) and sigma(k) is an integer[296]
- 1456 = number of regions in regular 15-gon with all diagonals drawn[297]
- 1457 = 2 × 272 − 1 = a twin square[298]
- 1458 = maximum determinant of an 11 by 11 matrix of zeroes and ones, 3-smooth number (2×36)
- 1459 = Sexy prime with 1453, sum of nine consecutive primes (139 + 149 + 151 + 157 + 163 + 167 + 173 + 179 + 181), Pierpont prime
- 1460 = The number of years that would have to pass in the Julian calendar in order to accrue a full year's worth of leap days.
- 1461 = number of partitions of 38 into prime power parts[209]
- 1462 = (35 - 1) × (35 + 8) = the first Zagreb index of the wheel graph with 35 vertices[299]
- 1463 = total number of parts in all partitions of 16[65]
- 1464 = rounded total surface area of a regular icosahedron with edge length 13[300]
- 1465 = 5-Knödel number[134]
- 1466 = , where = number of divisors of [301]
- 1467 = number of partitions of 39 with zero crank[302]
- 1468 = number of polyhexes with 11 cells that tile the plane by translation[303]
- 1469 = octahedral number,[143] highly cototient number[43]
- 1470 = pentagonal pyramidal number,[304] sum of totient function for first 69 integers
- 1471 = super-prime, centered heptagonal number[69]
- 1472 = number of overpartitions of 15[305]
- 1473 = cropped hexagone[244]
- 1474 = : triangular number plus quarter square (i.e., A000217(44) + A002620(44))[306]
- 1475 = number of partitions of 33 into parts each of which is used a different number of times[307]
- 1476 = coreful perfect number[308]
- 1477 = 7-Knödel number[130]
- 1478 = total number of largest parts in all compositions of 11[309]
- 1479 = number of planar partitions of 12[310]
- 1480 = sum of the first 29 primes
- 1481 = Sophie Germain prime[13]
- 1482 = pronic number,[51] number of unimodal compositions of 15 where the maximal part appears once[311]
- 1483 = 392 - 39 + 1 = H39 (the 39th Hogben number)[165]
- 1484 = maximal number of regions the plane is divided into by drawing 39 circles[206]
- 1485 = 54th triangular number[28]
- 1486 = number of strict solid partitions of 19[91]
- 1487 = safe prime[22]
- 1488 = triangular matchstick number,[48] commonly used as a hate symbol
- 1489 = centered triangular number[125]
- 1490 = tetranacci number[312]
- 1491 = nonagonal number,[180] Mertens function zero
- 1492 = discriminant of a totally real cubic field,[290] Mertens function zero
- 1493 = Stern prime[162]
- 1494 = sum of totient function for first 70 integers
- 1495 = 9###[313]
- 1496 = square pyramidal number[17]
- 1497 = skiponacci number[121]
- 1498 = number of flat partitions of 41[314]
- 1499 = Sophie Germain prime,[13] super-prime
1500 to 1599
[edit]- 1500 = hypotenuse in three different Pythagorean triangles[315]
- 1501 = centered pentagonal number[46]
- 1502 = number of pairs of consecutive integers x, x+1 such that all prime factors of both x and x+1 are at most 47[316]
- 1503 = least number of triangles of the Spiral of Theodorus to complete 12 revolutions[210]
- 1504 = primitive abundant number (abundant number all of whose proper divisors are deficient numbers)[262]
- 1505 = number of integer partitions of 41 with distinct differences between successive parts[317]
- 1506 = number of Golomb partitions of 28[318]
- 1507 = number of partitions of 32 that do not contain 1 as a part[34]
- 1508 = heptagonal pyramidal number[151]
- 1509 = pinwheel number[95]
- 1510 = deficient number, odious number
- 1511 = Sophie Germain prime,[13] balanced prime[96]
- 1512 = k such that geometric mean of phi(k) and sigma(k) is an integer[296]
- 1513 = centered square number[14]
- 1514 = sum of first 44 composite numbers[179]
- 1515 = maximum dimension of Euclidean spaces which suffice for every smooth compact Riemannian 30-manifold to be realizable as a sub-manifold[283]
- 1516 = [319]
- 1517 = number of lattice points inside a circle of radius 22[120]
- 1518 = sum of first 32 semiprimes,[320] Mertens function zero
- 1519 = number of polyhexes with 8 cells,[321] Mertens function zero
- 1520 = pentagonal number,[73] Mertens function zero, forms a Ruth–Aaron pair with 1521 under second definition
- 1521 = 392, Mertens function zero, centered octagonal number,[184] forms a Ruth–Aaron pair with 1520 under second definition
- 1522 = k such that 5 × 2k - 1 is prime[243]
- 1523 = super-prime, Mertens function zero, safe prime,[22] member of the Mian–Chowla sequence[18]
- 1524 = Mertens function zero, k such that geometric mean of phi(k) and sigma(k) is an integer[296]
- 1525 = heptagonal number,[68] Mertens function zero
- 1526 = number of conjugacy classes in the alternating group A27[322]
- 1527 = number of 2-dimensional partitions of 11,[323] Mertens function zero
- 1528 = Mertens function zero, rounded total surface area of a regular octahedron with edge length 21[324]
- 1529 = composite de Polignac number[175]
- 1530 = vampire number[205]
- 1531 = prime number, centered decagonal number, Mertens function zero
- 1532 = number of series-parallel networks with 9 unlabeled edges,[325] Mertens function zero
- 1533 = 21 × 73 = 21 × 21st prime[213]
- 1534 = number of achiral integer partitions of 50[256]
- 1535 = Thabit number
- 1536 = a common size of microplate, 3-smooth number (29×3), number of threshold functions of exactly 4 variables[326]
- 1537 = Keith number,[97] Mertens function zero
- 1538 = number of surface points on a cube with edge-length 17[19]
- 1539 = maximal number of pieces that can be obtained by cutting an annulus with 54 cuts[117]
- 1540 = 55th triangular number,[28] hexagonal number,[29] decagonal number,[99] tetrahedral number[129]
- 1541 = octagonal number[148]
- 1542 = k such that 2^k starts with k[327]
- 1543 = prime dividing all Fibonacci sequences,[328] Mertens function zero
- 1544 = Mertens function zero, number of partitions of integer partitions of 17 where all parts have the same length[329]
- 1545 = number of reversible string structures with 9 beads using exactly three different colors[330]
- 1546 = number of 5 X 5 binary matrices with at most one 1 in each row and column,[331] Mertens function zero
- 1547 = hexagonal pyramidal number
- 1548 = coreful perfect number[308]
- 1549 = de Polignac prime[332]
- 1550 = = number of cards needed to build a 31-tier house of cards with a flat, one-card-wide roof[333]
- 1551 = 6920 - 5369 = A169952(24) - A169952(23) = A169942(24) = number of Golomb rulers of length 24[334][335]
- 1552 = Number of partitions of 57 into prime parts
- 1553 = 509 + 521 + 523 = a prime that is the sum of three consecutive primes[336]
- 1554 = 2 × 3 × 7 × 37 = product of four distinct primes[337]
- 15552 divides 61554[338]
- 1556 = sum of the squares of the first nine primes
- 1557 = number of graphs with 8 nodes and 13 edges[339]
- 1558 = number k such that k64 + 1 is prime
- 1559 = Sophie Germain prime[13]
- 1560 = pronic number[51]
- 1561 = a centered octahedral number,[147] number of series-reduced trees with 19 nodes[340]
- 1562 = maximal number of regions the plane is divided into by drawing 40 circles[206]
- 1563 = [341]
- 1564 = sum of totient function for first 71 integers
- 1565 = and [342]
- 1566 = number k such that k64 + 1 is prime
- 1567 = number of partitions of 24 with at least one distinct part[200]
- 1568 = Achilles number[343]
- 1569 = 2 × 282 + 1 = number of different 2 × 2 determinants with integer entries from 0 to 28[199]
- 1570 = 2 × 282 + 2 = number of points on surface of tetrahedron with edgelength 28[141]
- 1571 = Honaker prime[226]
- 1572 = member of the Mian–Chowla sequence[18]
- 1573 = discriminant of a totally real cubic field[290]
- 1574256 + 1 is prime[344]
- 1575 = odd abundant number,[345] sum of the nontriangular numbers between successive triangular numbers, number of partitions of 24[202]
- 157614 == 1 (mod 15^2)[346]
- 1577 = sum of the quadratic residues of 83[347]
- 1578 = sum of first 45 composite numbers[179]
- 1579 = number of partitions of 54 such that the smallest part is greater than or equal to number of parts[225]
- 1580 = number of achiral integer partitions of 51[256]
- 1581 = number of edges in the hexagonal triangle T(31)[122]
- 1582 = a number such that the integer triangle [A070080(1582), A070081(1582), A070082(1582)] has an integer area[348]
- 1583 = Sophie Germain prime
- 1584 = triangular matchstick number[48]
- 1585 = Riordan number, centered triangular number[125]
- 1586 = area of the 23rd conjoined trapezoid[169]
- 1587 = 3 × 232 = number of edges of a complete tripartite graph of order 69, K23,23,23[349]
- 1588 = sum of totient function for first 72 integers
- 1589 = composite de Polignac number[175]
- 1590 = rounded volume of a regular icosahedron with edge length 9[350]
- 1591 = rounded volume of a regular octahedron with edge length 15[224]
- 1592 = sum of all divisors of the first 36 odd numbers[351]
- 1593 = sum of the first 30 primes
- 1594 = minimal cost of maximum height Huffman tree of size 17[352]
- 1595 = number of non-isomorphic set-systems of weight 10
- 1596 = 56th triangular number[28]
- 1597 = Fibonacci prime,[353] Markov prime,[238] super-prime, emirp
- 1598 = number of unimodular 2 × 2 matrices having all terms in {0,1,...,25}[112]
- 1599 = number of edges in the join of two cycle graphs, both of order 39[142]
1600 to 1699
[edit]- 1600 = 402, structured great rhombicosidodecahedral number,[354] repdigit in base 7 (44447), street number on Pennsylvania Avenue of the White House, length in meters of a common High School Track Event, perfect score on SAT (except from 2005 to 2015)
- 1601 = Sophie Germain prime, Proth prime,[140] the novel 1601 (Mark Twain)
- 1602 = number of points on surface of octahedron with edgelength 20[146]
- 1603 = number of partitions of 27 with nonnegative rank[355]
- 1604 = number of compositions of 22 into prime parts[356]
- 1605 = number of polyominoes consisting of 7 regular octagons[357]
- 1606 = enneagonal pyramidal number[358]
- 1607 = member of prime triple with 1609 and 1613[359]
- 1608 = [168]
- 1609 = cropped hexagonal number[244]
- 1610 = number of strict partions of 43[108]
- 1611 = number of rational numbers which can be constructed from the set of integers between 1 and 51[152]
- 1612 = maximum dimension of Euclidean spaces which suffice for every smooth compact Riemannian 31-manifold to be realizable as a sub-manifold[283]
- 1613, 1607 and 1619 are all primes[360]
- 1614 = number of ways of refining the partition 8^1 to get 1^8[361]
- 1615 = composite number such that the square mean of its prime factors is a nonprime integer[362]
- 1616 = = number of monotonic triples (x,y,z) in {1,2,...,16}3[363]
- 1617 = pentagonal number[73]
- 1618 = centered heptagonal number[69]
- 1619 = palindromic prime in binary, safe prime[22]
- 1620 = 809 + 811: sum of twin prime pair[192]
- 1621 = super-prime, pinwheel number[95]
- 1622 = semiprime of the form prime + 1[364]
- 1623 is not the sum of two triangular numbers and a fourth power[365]
- 1624 = number of squares in the Aztec diamond of order 28[366]
- 1625 = centered square number[14]
- 1626 = centered pentagonal number[46]
- 1627 = prime and 2 × 1627 - 1 = 3253 is also prime[367]
- 1628 = centered pentagonal number[46]
- 1629 = rounded volume of a regular tetrahedron with edge length 24[289]
- 1630 = number k such that k^64 + 1 is prime
- 1631 = [368]
- 1632 = number of acute triangles made from the vertices of a regular 18-polygon[369]
- 1633 = star number[88]
- 1634 = the smallest four-digit Narcissistic number in base 10
- 1635 = number of partitions of 56 whose reciprocal sum is an integer[370]
- 1636 = number of nonnegative solutions to x2 + y2 ≤ 452[254]
- 1637 = prime island: least prime whose adjacent primes are exactly 30 apart[371]
- 1638 = harmonic divisor number,[372] 5 × 21638 - 1 is prime[243]
- 1639 = nonagonal number[180]
- 1640 = pronic number[51]
- 1641 = 412 - 41 + 1 = H41 (the 41st Hogben number)[165]
- 1642 = maximal number of regions the plane is divided into by drawing 41 circles[206]
- 1643 = sum of first 46 composite numbers[179]
- 1644 = 821 + 823: sum of twin prime pair[192]
- 1645 = number of 16-celled pseudo still lifes in Conway's Game of Life, up to rotation and reflection[373]
- 1646 = number of graphs with 8 nodes and 14 edges[339]
- 1647 and 1648 are both divisible by cubes[374]
- 1648 = number of partitions of 343 into distinct cubes[375]
- 1649 = highly cototient number,[43] Leyland number[115] using 4 & 5 (45 + 54)
- 1650 = number of cards to build an 33-tier house of cards[164]
- 1651 = heptagonal number[68]
- 1652 = number of partitions of 29 into a prime number of parts[110]
- 1653 = 57th triangular number,[28] hexagonal number,[29] number of lattice points inside a circle of radius 23[120]
- 1654 = number of partitions of 42 into divisors of 42[376]
- 1655 = rounded volume of a regular dodecahedron with edge length 6[377]
- 1656 = 827 + 829: sum of twin prime pair[192]
- 1657 = cuban prime,[378] prime of the form 2p-1
- 1658 = smallest composite that when added to sum of prime factors reaches a prime after 25 iterations[280]
- 1659 = number of rational numbers which can be constructed from the set of integers between 1 and 52[152]
- 1660 = sum of totient function for first 73 integers
- 1661 = 11 × 151, palindrome that is a product of two palindromic primes[105]
- 1662 = number of partitions of 49 into pairwise relatively prime parts[161]
- 1663 = a prime number and 51663 - 41663 is a 1163-digit prime number[379]
- 1664 = k such that k, k+1 and k+2 are sums of 2 squares[380]
- 1665 = centered tetrahedral number[239]
- 1666 = largest efficient pandigital number in Roman numerals (each symbol occurs exactly once)
- 1667 = 228 + 1439 and the 228th prime is 1439[285]
- 1668 = number of partitions of 33 into parts all relatively prime to 33[381]
- 1669 = super-prime, smallest prime with a gap of exactly 24 to the next prime[382]
- 1670 = number of compositions of 12 such that at least two adjacent parts are equal[383]
- 1671 divides the sum of the first 1671 composite numbers[384]
- 1672 = 412 - 32, the only way to express 1672 as a difference of prime squares[245]
- 1673 = RMS number[385]
- 1674 = k such that geometric mean of phi(k) and sigma(k) is an integer[296]
- 1675 = Kin number[386]
- 1676 = number of partitions of 34 into parts each of which is used a different number of times[307]
- 1677 = 412 - 22, the only way to express 1677 as a difference of prime squares[245]
- 1678 = n such that n32 + 1 is prime[131]
- 1679 = highly cototient number,[43] semiprime (23 × 73, see also Arecibo message), number of parts in all partitions of 32 into distinct parts[45]
- 1680 = the 17th highly composite number,[204] number of edges in the join of two cycle graphs, both of order 40[142]
- 1681 = 412, smallest number yielded by the formula n2 + n + 41 that is not a prime; centered octagonal number[184]
- 1682 = and 1683 is a member of a Ruth–Aaron pair (first definition)
- 1683 = triangular matchstick number[48]
- 1684 = centered triangular number[125]
- 1685 = 5-Knödel number[134]
- 1686 = [168]
- 1687 = 7-Knödel number[130]
- 1688 = number of finite connected sets of positive integers greater than one with least common multiple 72[387]
- 1689 = [388]
- 1690 = number of compositions of 14 into powers of 2[389]
- 1691 = the same upside down, which makes it a strobogrammatic number[390]
- 1692 = coreful perfect number[308]
- 1693 = smallest prime > 412.[149]
- 1694 = number of unimodular 2 × 2 matrices having all terms in {0,1,...,26}[112]
- 1695 = magic constant of n × n normal magic square and n-queens problem for n = 15. Number of partitions of 58 into prime parts
- 1696 = sum of totient function for first 74 integers
- 1697 = Friedlander-Iwaniec prime[103]
- 1698 = number of rooted trees with 47 vertices in which vertices at the same level have the same degree[208]
- 1699 = number of rooted trees with 48 vertices in which vertices at the same level have the same degree[208]
1700 to 1799
[edit]- 1700 = σ2(39): sum of squares of divisors of 39[261]
- 1701 = , decagonal number, hull number of the U.S.S. Enterprise on Star Trek
- 1702 = palindromic in 3 consecutive bases: 89814, 78715, 6A616
- 1703 = 1703131131 / 1000077 and the divisors of 1703 are 1703, 131, 13 and 1[391]
- 1704 = sum of the squares of the parts in the partitions of 18 into two distinct parts[392]
- 1705 = tribonacci number[393]
- 1706 = 1 + 4 + 16 + 64 + 256 + 1024 + 256 + 64 + 16 + 4 + 1 sum of fifth row of triangle of powers of 4[394]
- 1707 = number of partitions of 30 in which the number of parts divides 30[281]
- 1708 = 22 × 7 × 61 a number whose product of prime indices 1 × 1 × 4 × 18 is divisible by its sum of prime factors 2 + 2 + 7 + 61[395]
- 1709 = first of a sequence of eight primes formed by adding 57 in the middle. 1709, 175709, 17575709, 1757575709, 175757575709, 17575757575709, 1757575757575709 and 175757575757575709 are all prime, but 17575757575757575709 = 232433 × 75616446785773
- 1710 = maximal number of pieces that can be obtained by cutting an annulus with 57 cuts[117]
- 1711 = 58th triangular number,[28] centered decagonal number
- 1712 = number of irredundant sets in the 29-cocktail party graph[214]
- 1713 = number of aperiodic rooted trees with 12 nodes[396]
- 1714 = number of regions formed by drawing the line segments connecting any two of the 18 perimeter points of an 3 × 6 grid of squares[397]
- 1715 = k such that geometric mean of phi(k) and sigma(k) is an integer[296]
- 1716 = 857 + 859: sum of twin prime pair[192]
- 1717 = pentagonal number[73]
- 1718 = [398]
- 1719 = composite de Polignac number[175]
- 1720 = sum of the first 31 primes
- 1721 = twin prime; number of squares between 422 and 424.[114]
- 1722 = Giuga number,[399] pronic number[51]
- 1723 = super-prime
- 1724 = maximal number of regions the plane is divided into by drawing 42 circles[206]
- 1725 = 472 - 222 = (prime(15))2 - (nonprime(15))2[400]
- 1726 = number of partitions of 44 into distinct and relatively prime parts[401]
- 1727 = area of the 24th conjoined trapezoid[169]
- 1728 = the quantity expressed as 1000 in duodecimal, that is, the cube of twelve (called a great gross), and so, the number of cubic inches in a cubic foot, palindromic in base 11 (133111) and 23 (36323)
- 1729 = taxicab number, Carmichael number, Zeisel number, centered cube number, Hardy–Ramanujan number. In the decimal expansion of e the first time all 10 digits appear in sequence starts at the 1729th digit (or 1728th decimal place). In 1979 the rock musical Hair closed on Broadway in New York City after 1729 performances. Palindromic in bases 12, 32, 36.
- 1730 = 3 × 242 + 2 = number of points on surface of square pyramid of side-length 24[295]
- 1731 = k such that geometric mean of phi(k) and sigma(k) is an integer[296]
- 1732 = [402]
- 1733 = Sophie Germain prime, palindromic in bases 3, 18, 19.
- 1734 = surface area of a cube of edge length 17[403]
- 1735 = number of partitions of 55 such that the smallest part is greater than or equal to number of parts[225]
- 1736 = sum of totient function for first 75 integers, number of surface points on a cube with edge-length 18[19]
- 1737 = pinwheel number[95]
- 1738 = number of achiral integer partitions of 52[256]
- 1739 = number of 1s in all partitions of 30 into odd parts[404]
- 1740 = number of squares in the Aztec diamond of order 29[366]
- 1741 = super-prime, centered square number[14]
- 1742 = number of regions the plane is divided into by 30 ellipses[101]
- 1743 = wiener index of the windmill graph D(3,21)[128]
- 1744 = k such that k, k+1 and k+2 are sums of 2 squares[380]
- 1745 = 5-Knödel number[134]
- 1746 = number of unit-distance graphs on 8 nodes[405]
- 1747 = balanced prime[96]
- 1748 = number of partitions of 55 into distinct parts in which the number of parts divides 55[406]
- 1749 = number of integer partitions of 33 with no part dividing all the others[230]
- 1750 = hypotenuse in three different Pythagorean triangles[315]
- 1751 = cropped hexagone[244]
- 1752 = 792 - 672, the only way to express 1752 as a difference of prime squares[245]
- 1753 = balanced prime[96]
- 1754 = k such that 5*2k - 1 is prime[243]
- 1755 = number of integer partitions of 50 whose augmented differences are distinct[274]
- 1756 = centered pentagonal number[46]
- 1757 = least number of triangles of the Spiral of Theodorus to complete 13 revolutions[210]
- 1758 = [168]
- 1759 = de Polignac prime[332]
- 1760 = the number of yards in a mile
- 1761 = k such that k, k+1 and k+2 are products of two primes[246]
- 1762 = number of binary sequences of length 12 and curling number 2[407]
- 1763 = number of edges in the join of two cycle graphs, both of order 41[142]
- 1764 = 422
- 1765 = number of stacks, or planar partitions of 15[408]
- 1766 = number of points on surface of octahedron with edge length 21[146]
- 1767 = σ(282) = σ(352)[409]
- 1768 = number of nonequivalent dissections of an hendecagon into 8 polygons by nonintersecting diagonals up to rotation[410]
- 1769 = maximal number of pieces that can be obtained by cutting an annulus with 58 cuts[117]
- 1770 = 59th triangular number,[28] hexagonal number,[29] Seventeen Seventy, town in Australia
- 1771 = tetrahedral number[129]
- 1772 = centered heptagonal number,[69] sum of totient function for first 76 integers
- 1773 = number of words of length 5 over the alphabet {1,2,3,4,5} such that no two even numbers appear consecutively[411]
- 1774 = number of rooted identity trees with 15 nodes and 5 leaves[412]
- 1775 = : sum of piles of first 10 primes[413]
- 1776 = 24th square star number.[414] The number of pieces that could be seen in a 7 × 7 × 7× 7 Rubik's Tesseract.
- 1777 = smallest prime > 422.[149]
- 1778 = least k >= 1 such that the remainder when 6k is divided by k is 22[415]
- 1779 = number of achiral integer partitions of 53[256]
- 1780 = number of lattice paths from (0, 0) to (7, 7) using E (1, 0) and N (0, 1) as steps that horizontally cross the diagonal y = x with even many times[416]
- 1781 = the first 1781 digits of e form a prime[417]
- 1782 = heptagonal number[68]
- 1783 = de Polignac prime[332]
- 1784 = number of subsets of {1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12} such that every pair of distinct elements has a different quotient[418]
- 1785 = square pyramidal number,[17] triangular matchstick number[48]
- 1786 = centered triangular number[125]
- 1787 = super-prime, sum of eleven consecutive primes (137 + 139 + 149 + 151 + 157 + 163 + 167 + 173 + 179 + 181 + 191)
- 1788 = Euler transform of -1, -2, ..., -34[419]
- 1789 = number of wiggly sums adding to 17 (terms alternately increase and decrease or vice versa)[420]
- 1790 = number of partitions of 50 into pairwise relatively prime parts[161]
- 1791 = largest natural number that cannot be expressed as a sum of at most four hexagonal numbers.
- 1792 = Granville number
- 1793 = number of lattice points inside a circle of radius 24[120]
- 1794 = nonagonal number,[180] number of partitions of 33 that do not contain 1 as a part[34]
- 1795 = number of heptagons with perimeter 38[421]
- 1796 = k such that geometric mean of phi(k) and sigma(k) is an integer[296]
- 1797 = number k such that phi(prime(k)) is a square[293]
- 1798 = 2 × 29 × 31 = 102 × 111012 × 111112, which yield zero when the prime factors are xored together[422]
- 1799 = 2 × 302 − 1 = a twin square[298]
1800 to 1899
[edit]- 1800 = pentagonal pyramidal number,[304] Achilles number, also, in da Ponte's Don Giovanni, the number of women Don Giovanni had slept with so far when confronted by Donna Elvira, according to Leporello's tally
- 1801 = cuban prime, sum of five and nine consecutive primes (349 + 353 + 359 + 367 + 373 and 179 + 181 + 191 + 193 + 197 + 199 + 211 + 223 + 227)[378]
- 1802 = 2 × 302 + 2 = number of points on surface of tetrahedron with edge length 30,[141] number of partitions of 30 such that the number of odd parts is a part[173]
- 1803 = number of decahexes that tile the plane isohedrally but not by translation or by 180-degree rotation (Conway criterion)[423]
- 1804 = number k such that k^64 + 1 is prime
- 1805 = number of squares between 432 and 434.[114]
- 1806 = pronic number,[51] product of first four terms of Sylvester's sequence, primary pseudoperfect number,[424] only number for which n equals the denominator of the nth Bernoulli number,[425] Schröder number[426]
- 1807 = fifth term of Sylvester's sequence[427]
- 1808 = maximal number of regions the plane is divided into by drawing 43 circles[206]
- 1809 = sum of first 17 super-primes[428]
- 1810 = [429]
- 1811 = Sophie Germain prime
- 1812 = n such that n32 + 1 is prime[131]
- 1813 = number of polyominoes with 26 cells, symmetric about two orthogonal axes[430]
- 1814 = 1 + 6 + 36 + 216 + 1296 + 216 + 36 + 6 + 1 = sum of 4th row of triangle of powers of six[431]
- 1815 = polygonal chain number [432]
- 1816 = number of strict partions of 44[108]
- 1817 = total number of prime parts in all partitions of 20[433]
- 1818 = n such that n32 + 1 is prime[131]
- 1819 = sum of the first 32 primes, minus 32[434]
- 1820 = pentagonal number,[73] pentatope number,[259] number of compositions of 13 whose run-lengths are either weakly increasing or weakly decreasing[435]
- 1821 = member of the Mian–Chowla sequence[18]
- 1822 = number of integer partitions of 43 whose distinct parts are connected[232]
- 1823 = super-prime, safe prime[22]
- 1824 = 432 - 52, the only way to express 1824 as a difference of prime squares[245]
- 1825 = octagonal number[148]
- 1826 = decagonal pyramidal number[4]
- 1827 = vampire number[205]
- 1828 = meandric number, open meandric number, appears twice in the first 10 decimal digits of e
- 1829 = composite de Polignac number[175]
- 1830 = 60th triangular number[28]
- 1831 = smallest prime with a gap of exactly 16 to next prime (1847)[436]
- 1832 = sum of totient function for first 77 integers
- 1833 = number of atoms in a decahedron with 13 shells[437]
- 1834 = octahedral number,[143] sum of the cubes of the first five primes
- 1835 = absolute value of numerator of [438]
- 1836 = factor by which a proton is more massive than an electron
- 1837 = star number[88]
- 1838 = number of unimodular 2 × 2 matrices having all terms in {0,1,...,27}[112]
- 1839 = [439]
- 1840 = 432 - 32, the only way to express 1840 as a difference of prime squares[245]
- 1841 = solution to the postage stamp problem with 3 denominations and 29 stamps,[440] Mertens function zero
- 1842 = number of unlabeled rooted trees with 11 nodes[441]
- 1843 = k such that phi(k) is a perfect cube,[442] Mertens function zero
- 1844 = 37 - 73,[443] Mertens function zero
- 1845 = number of partitions of 25 containing at least one prime,[444] Mertens function zero
- 1846 = sum of first 49 composite numbers[179]
- 1847 = super-prime
- 1848 = number of edges in the join of two cycle graphs, both of order 42[142]
- 1849 = 432, palindromic in base 6 (= 123216), centered octagonal number[184]
- 1850 = Number of partitions of 59 into prime parts
- 1851 = sum of the first 32 primes
- 1852 = number of quantales on 5 elements, up to isomorphism[445]
- 1853 = sum of primitive roots of 27-th prime,[446] Mertens function zero
- 1854 = number of permutations of 7 elements with no fixed points,[447] Mertens function zero
- 1855 = rencontres number: number of permutations of [7] with exactly one fixed point[448]
- 1856 = sum of totient function for first 78 integers
- 1857 = Mertens function zero, pinwheel number[95]
- 1858 = number of 14-carbon alkanes C14H30 ignoring stereoisomers[449]
- 1859 = composite de Polignac number[175]
- 1860 = number of squares in the Aztec diamond of order 30[450]
- 1861 = centered square number,[14] Mertens function zero
- 1862 = Mertens function zero, forms a Ruth–Aaron pair with 1863 under second definition
- 1863 = Mertens function zero, forms a Ruth–Aaron pair with 1862 under second definition
- 1864 = Mertens function zero, is a prime[451]
- 1865 = 123456: Largest senary metadrome (number with digits in strict ascending order in base 6)[452]
- 1866 = Mertens function zero, number of plane partitions of 16 with at most two rows[453]
- 1867 = prime de Polignac number[332]
- 1868 = smallest number of complexity 21: smallest number requiring 21 1's to build using +, * and ^[291]
- 1869 = Hultman number: SH(7, 4)[454]
- 1870 = decagonal number[99]
- 1871 = the first prime of the 2 consecutive twin prime pairs: (1871, 1873) and (1877, 1879)[455]
- 1872 = first Zagreb index of the complete graph K13[294]
- 1873 = number of Narayana's cows and calves after 21 years[215]
- 1874 = area of the 25th conjoined trapezoid[169]
- 1875 = 502 - 252
- 1876 = number k such that k^64 + 1 is prime
- 1877 = number of partitions of 39 where 39 divides the product of the parts[456]
- 1878 = n such that n32 + 1 is prime[131]
- 1879 = a prime with square index[457]
- 1880 = the 10th element of the self convolution of Lucas numbers[458]
- 1881 = tricapped prism number[459]
- 1882 = number of linearly separable Boolean functions in 4 variables[460]
- 1883 = number of conjugacy classes in the alternating group A28[322]
- 1884 = k such that 5*2k - 1 is prime[243]
- 1885 = Zeisel number[282]
- 1886 = number of partitions of 64 into fourth powers[461]
- 1887 = number of edges in the hexagonal triangle T(34)[122]
- 1888 = primitive abundant number (abundant number all of whose proper divisors are deficient numbers)[262]
- 1889 = Sophie Germain prime, highly cototient number[43]
- 1890 = triangular matchstick number[48]
- 1891 = 61st triangular number,[28] sum of 5 consecutive primes (367 + 373 + 379 + 383 + 389) hexagonal number,[29] centered pentagonal number,[46] centered triangular number[125]
- 1892 = pronic number[51]
- 1893 = 442 - 44 + 1 = H44 (the 44th Hogben number)[165]
- 1894 = maximal number of regions the plane is divided into by drawing 44 circles[206]
- 1895 = Stern-Jacobsthal number[250]
- 1896 = member of the Mian-Chowla sequence[18]
- 1897 = member of Padovan sequence,[75] number of triangle-free graphs on 9 vertices[462]
- 1898 = smallest multiple of n whose digits sum to 26[463]
- 1899 = cropped hexagone[244]
1900 to 1999
[edit]- 1900 = number of primes <= 214[25]
- 1901 = Sophie Germain prime, centered decagonal number
- 1902 = number of symmetric plane partitions of 27[464]
- 1903 = generalized Catalan number[465]
- 1904 = number of flat partitions of 43[314]
- 1905 = Fermat pseudoprime[100]
- 1906 = number n such that 3n - 8 is prime[466]
- 1907 = safe prime,[22] balanced prime[96]
- 1908 = coreful perfect number[308]
- 1909 = hyperperfect number[467]
- 1910 = number of compositions of 13 having exactly one fixed point[468]
- 1911 = heptagonal pyramidal number[151]
- 1912 = size of 6th maximum raising after one blind in pot-limit poker[469]
- 1913 = super-prime, Honaker prime[226]
- 1914 = number of bipartite partitions of 12 white objects and 3 black ones[470]
- 1915 = number of nonisomorphic semigroups of order 5[471]
- 1916 = sum of first 50 composite numbers[179]
- 1917 = number of partitions of 51 into pairwise relatively prime parts[161]
- 1918 = heptagonal number[68]
- 1919 = smallest number with reciprocal of period length 36 in base 10[472]
- 1920 = sum of the nontriangular numbers between successive triangular numbers 120 and 136,
- 1921 = 4-dimensional centered cube number[473]
- 1922 = Area of a square with diagonal 62[54]
- 1923 = 2 × 312 + 1 = number of different 2 X 2 determinants with integer entries from 0 to 31[199]
- 1924 = 2 × 312 + 2 = number of points on surface of tetrahedron with edge length 31,[141] sum of the first 36 semiprimes[474]
- 1925 = number of ways to write 24 as an orderless product of orderless sums[109]
- 1926 = pentagonal number[73]
- 1927 = 211 - 112[475]
- 1928 = number of distinct values taken by 2^2^...^2 (with 13 2's and parentheses inserted in all possible ways)[476]
- 1929 = Mertens function zero, number of integer partitions of 42 whose distinct parts are connected[232]
- 1930 = number of pairs of consecutive integers x, x+1 such that all prime factors of both x and x+1 are at most 53[316]
- 1931 = Sophie Germain prime
- 1932 = number of partitions of 40 into prime power parts[209]
- 1933 = centered heptagonal number,[69] Honaker prime[226]
- 1934 = sum of totient function for first 79 integers
- 1935 = number of edges in the join of two cycle graphs, both of order 43[142]
- 1936 = 442, 18-gonal number,[477] 324-gonal number.
- 1937 = number of chiral n-ominoes in 12-space, one cell labeled[478]
- 1938 = Mertens function zero, number of points on surface of octahedron with edge length 22[146]
- 1939 = 7-Knödel number[130]
- 1940 = the Mahonian number: T(8, 9)[189]
- 1941 = maximal number of regions obtained by joining 16 points around a circle by straight lines[479]
- 1942 = number k for which 10k + 1, 10k + 3, 10k + 7, 10k + 9 and 10k + 13 are primes[480]
- 1943 = largest number not the sum of distinct tetradecagonal numbers[481]
- 1944 = 3-smooth number (23×35), Achilles number[343]
- 1945 = number of partitions of 25 into relatively prime parts such that multiplicities of parts are also relatively prime[482]
- 1946 = number of surface points on a cube with edge-length 19[19]
- 1947 = k such that 5·2k + 1 is a prime factor of a Fermat number 22m + 1 for some m[483]
- 1948 = number of strict solid partitions of 20[91]
- 1949 = smallest prime > 442.[149]
- 1950 = ,[484] largest number not the sum of distinct pentadecagonal numbers[481]
- 1951 = cuban prime[378]
- 1952 = number of covers of {1, 2, 3, 4}[485]
- 1953 = hexagonal prism number,[486] 62nd triangular number[28]
- 1954 = number of sum-free subsets of {1, ..., 16}[273]
- 1955 = number of partitions of 25 with at least one distinct part[200]
- 1956 = nonagonal number[180]
- 1957 = = total number of ordered k-tuples (k=0,1,2,3,4,5,6) of distinct elements from an 6-element set[487]
- 1958 = number of partitions of 25[202]
- 1959 = Heptanacci-Lucas number[488]
- 1960 = number of parts in all partitions of 33 into distinct parts[45]
- 1961 = number of lattice points inside a circle of radius 25[120]
- 1962 = number of edges in the join of the complete graph K36 and the cycle graph C36[489]
- 1963! - 1 is prime[490]
- 1964 = number of linear forests of planted planar trees with 8 nodes[491]
- 1965 = total number of parts in all partitions of 17[65]
- 1966 = sum of totient function for first 80 integers
- 1967 = least edge-length of a square dissectable into at least 30 squares in the Mrs. Perkins's quilt problem[492]
- σ(1968) = σ(1967) + σ(1966)[493]
- 1969 = Only value less than four million for which a "mod-ification" of the standard Ackermann Function does not stabilize[494]
- 1970 = number of compositions of two types of 9 having no even parts[495]
- 1971 = [496]
- 1972 = n such that is prime[497]
- 1973 = Sophie Germain prime, Leonardo prime
- 1974 = number of binary vectors of length 17 containing no singletons[181]
- 1975 = number of partitions of 28 with nonnegative rank[355]
- 1976 = octagonal number[148]
- 1977 = number of non-isomorphic multiset partitions of weight 9 with no singletons[498]
- 1978 = n such that n | (3n + 5)[499]
- 1979 = number of squares between 452 and 454,[114] smallest number that is the sum of 4 positive cubes in at least 4 ways[500]
- 1980 = pronic number,[51] highly abundant number with a greater sum of proper divisors than all smaller numbers[501]
- 1981 = pinwheel number,[95] central polygonal number[30]
- 1982 = maximal number of regions the plane is divided into by drawing 45 circles,[206] a number with the property that 31982 - 1982 is prime[502]
- 1983 = skiponacci number[121]
- 1984 = 11111000000 in binary, nonunitary perfect number,[503] see also: 1984 (disambiguation)
- 1985 = centered square number[14]
- 1986 = number of ways to write 25 as an orderless product of orderless sums[109]
- 1987 = 300th prime number
- 1988 = sum of the first 33 primes,[504] sum of the first 51 composite numbers[505]
- 1989 = number of balanced primes less than 100,000,[506] number of 9-step mappings with 4 inputs[263]
- 1990 = Stella octangula number
- 1991 = 11 × 181, the 46th Gullwing number,[507] palindromic composite number with only palindromic prime factors[508]
- 1992 = number of nonisomorphic sets of nonempty subsets of a 4-set[509]
- 1993 = a number with the property that 41993 - 31993 is prime,[510] number of partitions of 30 into a prime number of parts[110]
- 1994 = Glaisher's function W(37)[511]
- 1995 = number of unlabeled graphs on 9 vertices with independence number 6[512]
- 1996 = a number with the property that (1996! + 3)/3 is prime[513]
- 1997 = [514]
- 1998 = triangular matchstick number[48]
- 1999 = centered triangular number,[515] number of regular forms in a myriagram.
Prime numbers
[edit]There are 135 prime numbers between 1000 and 2000:[516][517]
- 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999
Notes
[edit]References
[edit]Wikimedia Commons has media related to 1000 (number).
- ^ "chiliad". Merriam-Webster. Archived from the original on 25 March 2022.
- ^ Sloane, N. J. A. (ed.). "Sequence A195163 (1000-gonal numbers: a(n) equal to n*(499*n - 498))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A122189 (Heptanacci numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A007585 (10-gonal (or decagonal) pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A332307 (Array read by antidiagonals: T(m,n) is the number of (undirected) Hamiltonian paths in the m X n grid graph)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 8 January 2023.
- ^ Sloane, N. J. A. (ed.). "Sequence A036063 (Increasing gaps among twin primes: size)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A003352 (Numbers that are the sum of 7 positive 5th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A061341 (A061341 Numbers not ending in 0 whose cubes are concatenations of other cubes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A003353 (Numbers that are the sum of 8 positive 5th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A034262 (a(n) = n^3 + n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A020473 (Egyptian fractions: number of partitions of 1 into reciprocals of positive integers <= n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A046092 (4 times triangular numbers: a(n) = 2*n*(n+1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 10 October 2023.
- ^ a b c d e f g h i j k l m n o Sloane, N. J. A. (ed.). "Sequence A005384 (Sophie Germain primes p: 2p+1 is also prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i j Sloane, N. J. A. (ed.). "Sequence A001844 (Centered square numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000325 (a(n) = 2^n - n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006002 (a(n) = n*(n+1)^2/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A000330 (Square pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h Sloane, N. J. A. (ed.). "Sequence A005282 (Mian-Chowla sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A005897 (6*n^2 + 2 for n > 0)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A316729 (Generalized 30-gonal (or triacontagonal) numbers: m*(14*m - 13) with m = 0, +1, -1, +2, -2, +3, -3)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006313 (Numbers n such that n^16 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i j k l Sloane, N. J. A. (ed.). "Sequence A005385 (Safe primes p: (p-1)/2 is also prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A034964 (Sums of five consecutive primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000162 (Number of 3-dimensional polyominoes (or polycubes) with n cells)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A007053 (Number of primes <= 2^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A004023 (Indices of prime repunits: numbers n such that 11...111 (with n 1's)... is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A004801 (Sum of 12 positive 9th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i j k l m n o p q r Sloane, N. J. A. (ed.). "Sequence A000217 (Triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A000384 (Hexagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A000124 (Central polygonal numbers (the Lazy Caterer's sequence): n(n+1)/2 + 1; or, maximal number of pieces formed when slicing a pancake with n cuts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A161328 (E-toothpick sequence (see Comments lines for definition))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A023036 (Smallest positive even integer that is an unordered sum of two primes in exactly n ways)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A007522 (Primes of the form 8n+7, that is, primes congruent to -1 mod 8)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 10 October 2023.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A002865 (Number of partitions of n that do not contain 1 as a part)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A000695 (Moser-de Bruijn sequence: sums of distinct powers of 4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A003356 (Numbers that are the sum of 11 positive 5th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A003357 (Numbers that are the sum of 12 positive 5th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A036301 (Numbers whose sum of even digits and sum of odd digits are equal)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000567 (Octagonal numbers: n*(3*n-2). Also called star numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000025 (Coefficients of the 3rd-order mock theta function f(q))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A336130 (Number of ways to split a strict composition of n into contiguous subsequences all having the same sum)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A073576 (Number of partitions of n into squarefree parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A100827 (Highly cototient numbers: records for a(n) in A063741)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Base converter | number conversion".
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A015723 (Number of parts in all partitions of n into distinct parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A005891 (Centered pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A003365 (Numbers that are the sum of 9 positive 6th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i j k Sloane, N. J. A. (ed.). "Sequence A045943 (Triangular matchstick numbers: 3*n*(n+1)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2 June 2022.
- ^ Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers: a(n) = 3*n*(n-1)/2 + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A003368 (Numbers that are the sum of 12 positive 6th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i j k l m Sloane, N. J. A. (ed.). "Sequence A002378 (Oblong (or promic, pronic, or heteromecic) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002061 (Central polygonal numbers: a(n) = n^2 - n + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A003349 (Numbers that are the sum of 4 positive 5th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A001105 (a(n) = 2*n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A003294 (Numbers k such that k^4 can be written as a sum of four positive 4th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A007504 (Sum of the first n primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A127337 (Numbers that are the sum of 10 consecutive primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006879 (Number of primes with n digits.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A035137 (Numbers that are not the sum of 2 palindromes (where 0 is considered a palindrome))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A347565 (Primes p such that A241014(A000720(p)) is +1 or -1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A003325 (Numbers that are the sum of 2 positive cubes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A195162 (Generalized 12-gonal numbers: k*(5*k-4) for k = 0, +-1, +-2, ...)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006532 (Numbers whose sum of divisors is a square)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A341450 (Number of strict integer partitions of n that are empty or have smallest part not dividing all the others)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A006128 (Total number of parts in all partitions of n. Also, sum of largest parts of all partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A006567 (Emirps (primes whose reversal is a different prime))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A003354 (Numbers that are the sum of 9 positive 5th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h Sloane, N. J. A. (ed.). "Sequence A000566 (Heptagonal numbers (or 7-gonal numbers): n*(5*n-3)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A069099 (Centered heptagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A273873 (Number of strict trees of weight n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A292457 (Numbers where 7 outnumbers any other digit)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A073592 (Euler transform of negative integers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i j Sloane, N. J. A. (ed.). "Sequence A000326 (Pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A067128 (Ramanujan's largely composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A000931 (Padovan sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A077043 ("Three-quarter squares": a(n) = n^2 - A002620(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000607 (Number of partitions of n into prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A056107 (Third spoke of a hexagonal spiral)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A025147 (Number of partitions of n into distinct parts >= 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006753 (Smith numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A031157 (Numbers that are both lucky and prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A033996 (8 times triangular numbers: a(n) = 4*n*(n+1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A018900 (Sums of two distinct powers of 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A046308 (Numbers that are divisible by exactly 7 primes counting multiplicity)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001232 (Numbers n such that 9*n = (n written backwards))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A003350 (Numbers that are the sum of 5 positive 5th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Wells, D. The Penguin Dictionary of Curious and Interesting Numbers London: Penguin Group. (1987): 163
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A003154 (Centered 12-gonal numbers. Also star numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A003355 (Numbers that are the sum of 10 positive 5th powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A051682 (11-gonal (or hendecagonal) numbers: a(n) = n*(9*n-7)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A323657 (Number of strict solid partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A121029 (Multiples of 9 containing a 9 in their decimal representation)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A292449 (Numbers where 9 outnumbers any other digit)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A087188 (number of partitions of n into distinct squarefree parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A059993 (Pinwheel numbers: 2*n^2 + 6*n + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A006562 (Balanced primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A007629 (Repfigit (REPetitive FIbonacci-like diGIT) numbers (or Keith numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A002997 : Carmichael numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ a b c d e "Sloane's A001107 : 10-gonal (or decagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A001567 (Fermat pseudoprimes to base 2, also called Sarrus numbers or Poulet numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A051890 (2*(n^2 - n + 1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A319560 (Number of non-isomorphic strict T_0 multiset partitions of weight n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A028916 (Friedlander-Iwaniec primes: Primes of form a^2 + b^4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A057732 (Numbers k such that 2^k + 3 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A046376 (Palindromes with exactly 2 palindromic prime factors (counted with multiplicity), and no other prime factors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A002275 - OEIS". oeis.org. Retrieved 8 March 2024.
- ^ Sloane, N. J. A. (ed.). "Sequence A128455 (Numbers k such that 9^k - 2 is a prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A000009 (Expansion of Product_{m > 0} (1 + x^m); number of partitions of n into distinct parts; number of partitions of n into odd parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A318949 (Number of ways to write n as an orderless product of orderless sums)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A038499 (Number of partitions of n into a prime number of parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A006748 (Number of diagonally symmetric polyominoes with n cells)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A210000 (Number of unimodular 2 X 2 matrices having all terms in {0,1,...,n})". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A033995 (Number of bipartite graphs with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A028387 (n + (n+1)^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A076980 (Leyland numbers: 3, together with numbers expressible as n^k + k^n nontrivially, i.e., n,k > 1 (to avoid n = (n-1)^1 + 1^(n-1)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A062801 (Number of 2 X 2 non-singular integer matrices with entries from {0,...,n})". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A000096 (n*(n+3)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A057809 (Numbers n such that pi(n) divides n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 23 May 2024.
- ^ Van Ekeren, Jethro; Lam, Ching Hung; Möller, Sven; Shimakura, Hiroki (2021). "Schellekens' list and the very strange formula". Advances in Mathematics. 380 107567. Amsterdam: Elsevier. arXiv:2005.12248. doi:10.1016/j.aim.2021.107567. MR 4200469. S2CID 218870375. Zbl 1492.17027.
- ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A000328". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A001608 (Perrin sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A140091 (3*n*(n + 3)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005380". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A051026 (Number of primitive subsequences of 1, 2, ..., n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers: 3n(n-1)/2 + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A080040 (2*a(n-1) + 2*a(n-2) for n > 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A264237 (Sum of values of vertices at level n of the hyperbolic Pascal pyramid)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A033991 (n*(4*n-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d "Sloane's A000292 : Tetrahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A208155 (7-Knödel numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A006315 (Numbers n such that n^32 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A185982 (Triangle read by rows: number of set partitions of n elements with k connectors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A007534 (Even numbers that are not the sum of a pair of twin primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A050993 (5-Knödel numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006094 (Products of 2 successive primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A046368 (Products of two palindromic primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "1150 (number)". The encyclopedia of numbers.
- ^ a b "Sloane's A000101 : Increasing gaps between primes (upper end)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 10 July 2016.
- ^ a b "Sloane's A097942 : Highly totient numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ a b c d "Sloane's A080076 : Proth primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A005893 (Number of points on surface of tetrahedron; coordination sequence for sodalite net (equals 2*n^2+2 for n > 0))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i j Sloane, N. J. A. (ed.). "Sequence n*(n+2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c "Sloane's A005900 : Octahedral numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ "Sloane's A069125 : a(n) = (11*n^2 - 11*n + 2)/2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ "1157 (number)". The encyclopedia of numbers.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A005899 (Number of points on surface of octahedron)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A001845 (Centered octahedral numbers (crystal ball sequence for cubic lattice))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2 June 2022.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A000567 (Octagonal numbers: n*(3*n-2). Also called star numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A007491 (Smallest prime > n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A055887 (Number of ordered partitions of partitions)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A002413 (Heptagonal (or 7-gonal) pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A018805". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A024816 (Antisigma(n): Sum of the numbers less than n that do not divide n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A063776 - OEIS". oeis.org.
- ^ "A000256 - OEIS". oeis.org.
- ^ "1179 (number)". The encyclopedia of numbers.
- ^ "A000339 - OEIS". oeis.org.
- ^ "A271269 - OEIS". oeis.org.
- ^ "A000031 - OEIS". oeis.org.
- ^ Higgins, Peter (2008). Number Story: From Counting to Cryptography. New York: Copernicus. p. 61. ISBN 978-1-84800-000-1.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A051424 (Number of partitions of n into pairwise relatively prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b "Sloane's A042978 : Stern primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ "A121038 - OEIS". oeis.org.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A005449 (Second pentagonal numbers: n*(3*n + 1)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A002061 (Central polygonal numbers: n^2 - n + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A175654 - OEIS". oeis.org.
- ^ oeis.org/A062092
- ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A024916 (Sum_1^n sigma(k))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e >Sloane, N. J. A. (ed.). "Sequence A080663 (3*n^2 - 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Meehan, Eileen R., Why TV is not our fault: television programming, viewers, and who's really in control Lanham, MD: Rowman & Littlefield, 2005
- ^ "A265070 - OEIS". oeis.org.
- ^ "1204 (number)". The encyclopedia of numbers.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A240574 (Number of partitions of n such that the number of odd parts is a part)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A303815 - OEIS". oeis.org.
- ^ a b c d e f g h Sloane, N. J. A. (ed.). "Sequence A098237 (Composite de Polignac numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A337070 (Number of strict chains of divisors starting with the superprimorial A006939(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Higgins, ibid.
- ^ Sloane, N. J. A. (ed.). "Sequence A000070 (Sum_{0..n} A000041(k))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g h i Sloane, N. J. A. (ed.). "Sequence A053767 (Sum of first n composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f "Sloane's A001106 : 9-gonal (or enneagonal or nonagonal) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A006355 (Number of binary vectors of length n containing no singletons)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A001110 : Square triangular numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ "A046177 - OEIS". oeis.org. Retrieved 18 December 2024.
- ^ a b c d e "Sloane's A016754 : Odd squares: a(n) = (2n+1)^2. Also centered octagonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A303815 (Generalized 29-gonal (or icosienneagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A249911 (60-gonal (hexacontagonal) numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A004111 - OEIS". oeis.org.
- ^ "A061262 - OEIS". oeis.org.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A008302 (Triangle of Mahonian numbers T(n,k): coefficients in expansion of Product{0..n-1} (1 + x + ... + x^i), where k ranges from 0 to A000217(n-1). Also enumerates permutations by their major index)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A006154 - OEIS". oeis.org.
- ^ "A000045 - OEIS". oeis.org.
- ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A054735 (Sums of twin prime pairs)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A160160 - OEIS". oeis.org.
- ^ "Sloane's A005898 : Centered cube numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A126796 (Number of complete partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ oeis.org/A305843
- ^ "A007690 - OEIS". oeis.org.
- ^ "Sloane's A033819 : Trimorphic numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A058331 (2*n^2 + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A144300 (Number of partitions of n minus number of divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000837 (Number of partitions of n into relatively prime parts. Also aperiodic partitions.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A000041 (a(n) is the number of partitions of n (the partition numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A193757 (Numbers which can be written with their digits in order and using only a plus and a squaring operator)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b "Sloane's A002182 : Highly composite numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ a b c d e "Sloane's A014575 : Vampire numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ a b c d e f g h i j Sloane, N. J. A. (ed.). "Sequence A014206 (n^2 + n + 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A070169 (Rounded total surface area of a regular tetrahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A003238 (Number of rooted trees with n vertices in which vertices at the same level have the same degree)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A023894 (Number of partitions of n into prime power parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A072895 (Least k for the Theodorus spiral to complete n revolutions)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A100040 (2*n^2 + n - 5)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A051349 (Sum of first n nonprimes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A033286 (n * prime(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A084849 (1 + n + 2*n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A000930 (Narayana's cows sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001792 ((n+2)*2^(n-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006958 (Number of parallelogram polyominoes with n cells (also called staircase polyominoes, although that term is overused))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A216492 (Number of inequivalent connected planar figures that can be formed from n 1 X 2 rectangles (or dominoes) such that each pair of touching rectangles shares exactly one edge, of length 1, and the adjacency graph of the rectangles is a tree)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A007318 (Pascal's triangle read by rows)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A014574 (Average of twin prime pairs)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A173831 (Largest prime < n^4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006872 (Numbers k such that phi(k) equals phi(sigma(k)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A014285 (Sum_{1..n} j*prime(j))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A071400 (Rounded volume of a regular octahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A003114 (Number of partitions of n into parts 5k+1 or 5k+4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A033548 (Honaker primes: primes P(k) such that sum of digits of P(k) equals sum of digits of k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000055 (Number of trees with n unlabeled nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A124826 - OEIS". oeis.org.
- ^ "A142005 - OEIS". oeis.org.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A338470 (Number of integer partitions of n with no part dividing all the others)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A066186 - OEIS". oeis.org.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A304716 (Number of integer partitions of n whose distinct parts are connected)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A115073 - OEIS". oeis.org.
- ^ "A061256 - OEIS". oeis.org.
- ^ "A061954 - OEIS". oeis.org.
- ^ Sloane, N. J. A. (ed.). "Sequence A057465 (Numbers k such that k^512 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A030299 - OEIS". oeis.org.
- ^ a b "Sloane's A002559 : Markoff (or Markov) numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A005894 (Centered tetrahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A018806 (Sum of gcd(x, y))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A018227 (Magic numbers: atoms with full shells containing any of these numbers of electrons are considered electronically stable)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A005064 - OEIS". oeis.org.
- ^ a b c d e f Sloane, N. J. A. (ed.). "Sequence A001770 (Numbers k such that 5*2^k - 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A144391 (3*n^2 + n - 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A090781 (Numbers that can be expressed as the difference of the squares of primes in just one distinct way)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A056809 (Numbers k such that k, k+1 and k+2 are products of two primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A316473 - OEIS". oeis.org.
- ^ "A000032 - OEIS". oeis.org.
- ^ "1348 (number)". The encyclopedia of numbers.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A101624 (Stern-Jacobsthal number)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A064228 (From Recamán's sequence (A005132): values of n achieving records in A057167)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A057167 (Term in Recamán's sequence A005132 where n appears for first time, or -1 if n never appears)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A064227 (From Recamán's sequence (A005132): record values in A057167)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A000603". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000960 (Flavius Josephus's sieve: Start with the natural numbers; at the k-th sieving step, remove every (k+1)-st term of the sequence remaining after the (k-1)-st sieving step; iterate)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e Sloane, N. J. A. (ed.). "Sequence A330224 (Number of achiral integer partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001610 (a(n-1) + a(n-2) + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000032 (Lucas numbers: L(n-1) + L(n-2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b "Sloane's A000332 : Binomial coefficient binomial(n,4) = n*(n-1)*(n-2)*(n-3)/24". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A005578 (Arima sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A001157 (sigma_2(n): sum of squares of divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A071395 (Primitive abundant numbers (abundant numbers all of whose proper divisors are deficient numbers))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A005945 (Number of n-step mappings with 4 inputs)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "A001631 - OEIS". oeis.org. Retrieved 25 June 2023.
- ^ Sloane, N. J. A. (ed.). "Sequence A088274 (Numbers k such that 10^k + 7 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000111 (Euler or up/down numbers: e.g.f. sec(x) + tan(x))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002414 (Octagonal pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A001567 : Fermat pseudoprimes to base 2". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ "Sloane's A050217 : Super-Poulet numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A054552 (4*n^2 - 3*n + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A017919 (Powers of sqrt(5) rounded down)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A109308 (Lesser emirps (primes whose digit reversal is a larger prime))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A007865 (Number of sum-free subsets of {1, ..., n})". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A325349 (Number of integer partitions of n whose augmented differences are distinct)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000060 (Number of signed trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A051400 (Smallest value of x such that M(x) equals n, where M() is Mertens's function A002321)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A000682 : Semimeanders". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A002445 (Denominators of Bernoulli numbers B_{2n})". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A045918 (Describe n. Also called the "Say What You See" or "Look and Say" sequence LS(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A050710 (Smallest composite that when added to sum of prime factors reaches a prime after n iterations)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A067538 (Number of partitions of n in which the number of parts divides n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b "Sloane's A051015 : Zeisel numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A059845 (n*(3*n + 11)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000097 (Number of partitions of n if there are two kinds of 1's and two kinds of 2's)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A061068 (Primes which are the sum of a prime and its subscript)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001359 (Lesser of twin primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001764 (binomial(3*n,n)/(2*n+1) (enumerates ternary trees and also noncrossing trees))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A000108 : Catalan numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A071399 (Rounded volume of a regular tetrahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c Sloane, N. J. A. (ed.). "Sequence A006832 (Discriminants of totally real cubic fields)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A003037 (Smallest number of complexity n: smallest number requiring n 1's to build using +, * and ^)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005259 (Apery (Apéry) numbers: Sum_0^n (binomial(n,k)*binomial(n+k,k))^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A062325 (Numbers k for which phi(prime(k)) is a square)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A011379 (n^2*(n+1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A005918 (Number of points on surface of square pyramid: 3*n^2 + 2 (n>0))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d e f g Sloane, N. J. A. (ed.). "Sequence A011257 (Geometric mean of phi(n) and sigma(n) is an integer)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A007678 (Number of regions in regular n-gon with all diagonals drawn)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A056220 (2*n^2 - 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A028569 (n*(n + 9))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A071398 (Rounded total surface area of a regular icosahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A085831 (Sum_1^{2^n} d(k) where d(k) is the number of divisors of k (A000005))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A064410 (Number of partitions of n with zero crank)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A075207 (Number of polyhexes with n cells that tile the plane by translation)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b "Sloane's A002411 : Pentagonal pyramidal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A015128 (Number of overpartitions of n: an overpartition of n is an ordered sequence of nonincreasing integers that sum to n, where the first occurrence of each integer may be overlined)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006578 (Triangular numbers plus quarter squares: n*(n+1)/2 + floor(n^2/4) (i.e., A000217(n) + A002620(n)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A098859 (Number of partitions of n into parts each of which is used a different number of times)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A307958 (Coreful perfect numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A097979 (Total number of largest parts in all compositions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000219 (Number of planar partitions (or plane partitions) of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006330 (Number of corners, or planar partitions of n with only one row and one column)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A000078 : Tetranacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A114411 (Triple primorial n###)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A034296 (Number of flat partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A084647 (Hypotenuses for which there exist exactly 3 distinct integer triangles)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A002071 (Number of pairs of consecutive integers x, x+1 such that all prime factors of both x and x+1 are at most the n-th prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A325325 (Number of integer partitions of n with distinct differences between successive parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A325858 (Number of Golomb partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A018000 (Powers of cube root of 9 rounded down)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A062198 (Sum of first n semiprimes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A038147 (Number of polyhexes with n cells)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A000702 (number of conjugacy classes in the alternating group A_n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001970 (Functional determinants; partitions of partitions; Euler transform applied twice to all 1's sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A071396 (Rounded total surface area of a regular octahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000084 (Number of series-parallel networks with n unlabeled edges. Also called yoke-chains by Cayley and MacMahon)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000615 (Threshold functions of exactly n variables)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A100129 (Numbers k such that 2^k starts with k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000057 (Primes dividing all Fibonacci sequences)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A319066 (Number of partitions of integer partitions of n where all parts have the same length)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A056327 (Number of reversible string structures with n beads using exactly three different colors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002720 (Number of partial permutations of an n-set; number of n X n binary matrices with at most one 1 in each row and column)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c d Sloane, N. J. A. (ed.). "Sequence A065381 (Primes not of the form p + 2^k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A140090 (n*(3*n + 7)/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A169942 (Number of Golomb rulers of length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A169952 (Second entry in row n of triangle in A169950)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A034962 (Primes that are the sum of three consecutive primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A046386 (Products of four distinct primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A127106 (Numbers n such that n^2 divides 6^n-1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A008406 (Triangle T(n,k) read by rows, giving number of graphs with n nodes and k edges))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000014 (Number of series-reduced trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A057660 (Sum_{1..n} n/gcd(n,k))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A088319 (Ordered hypotenuses of primitive Pythagorean triangles having legs that add up to a square)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A052486 (Achilles numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A056995 (Numbers k such that k^256 + 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A005231 : Odd abundant numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A056026 (Numbers k such that k^14 is congruent with 1 (mod 15^2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A076409 (Sum of the quadratic residues of prime(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A070142 (Numbers n such that [A070080(n), A070081(n), A070082(n)] is an integer triangle with integer area)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A033428 (3*n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A071402 (Rounded volume of a regular icosahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A326123 (a(n) is the sum of all divisors of the first n odd numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006327 (Fibonacci(n) - 3. Number of total preorders)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A000045 : Fibonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A100145 (Structured great rhombicosidodecahedral numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A064174 (Number of partitions of n with nonnegative rank)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A023360 (Number of compositions of n into prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A103473 (Number of polyominoes consisting of 7 regular unit n-gons)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A007584 (9-gonal (or enneagonal) pyramidal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A022004 (Initial members of prime triples (p, p+2, p+6))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006489 (Numbers k such that k-6, k, and k+6 are primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A213427 (Number of ways of refining the partition n^1 to get 1^n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A134602 (Composite numbers such that the square mean of their prime factors is a nonprime integer (where the prime factors are taken with multiplicity and the square mean of c and d is sqrt((c^2+d^2)/2)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A084990 (n*(n^2+3*n-1)/3)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A077068 (Semiprimes of the form prime + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A115160 (Numbers that are not the sum of two triangular numbers and a fourth power)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A046092 (4 times triangular numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005382 (Primes p such that 2p-1 is also prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001339 (Sum_{0..n} (k+1)! binomial(n,k))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A007290 (2*binomial(n,3))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A058360 (Number of partitions of n whose reciprocal sum is an integer)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A046931 (Prime islands: least prime whose adjacent primes are exactly 2n apart)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A001599 : Harmonic or Ore numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A056613 (Number of n-celled pseudo still lifes in Conway's Game of Life, up to rotation and reflection)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A068140 (Smaller of two consecutive numbers each divisible by a cube greater than one)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A030272 (Number of partitions of n^3 into distinct cubes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A018818 (Number of partitions of n into divisors of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A071401 (Rounded volume of a regular dodecahedron with edge length n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b c "Sloane's A002407 : Cuban primes". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A059802 (Numbers k such that 5^k - 4^k is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A082982 (Numbers k such that k, k+1 and k+2 are sums of 2 squares)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A057562 (Number of partitions of n into parts all relatively prime to n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000230 (smallest prime p such that there is a gap of exactly 2n between p and next prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A261983 (Number of compositions of n such that at least two adjacent parts are equal)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A053781 (Numbers k that divide the sum of the first k composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A140480 (RMS numbers: numbers n such that root mean square of divisors of n is an integer)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A023108 (Positive integers which apparently never result in a palindrome under repeated applications of the function A056964(x))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A286518 (Number of finite connected sets of positive integers greater than one with least common multiple n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A004041 (Scaled sums of odd reciprocals: (2*n + 1)!!*(Sum_{0..n} 1/(2*k + 1)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A023359 (Number of compositions (ordered partitions) of n into powers of 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000787 (Strobogrammatic numbers: the same upside down)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A224930 (Numbers n such that n divides the concatenation of all divisors in descending order)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A294286 (Sum of the squares of the parts in the partitions of n into two distinct parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A000073 : Tribonacci numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A020989 ((5*4^n - 2)/3)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A331378 (Numbers whose product of prime indices is divisible by their sum of prime factors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A301700 (Number of aperiodic rooted trees with n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A331452 (number of regions (or cells) formed by drawing the line segments connecting any two of the 2*(m+n) perimeter points of an m X n grid of squares)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A056045 ("Sum_{d divides n}(binomial(n,d))")". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A007850 : Giuga numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A161757 ((prime(n))^2 - (nonprime(n))^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A078374 (Number of partitions of n into distinct and relatively prime parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A167008 (Sum_{0..n} C(n,k)^k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A033581 (6*n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A036469 (Partial sums of A000009 (partitions into distinct parts))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A350507 (Number of (not necessarily connected) unit-distance graphs on n nodes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A102627 (Number of partitions of n into distinct parts in which the number of parts divides n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A216955 (number of binary sequences of length n and curling number k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001523 (Number of stacks, or planar partitions of n; also weakly unimodal compositions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A065764 (Sum of divisors of square numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A220881 (Number of nonequivalent dissections of an n-gon into n-3 polygons by nonintersecting diagonals up to rotation)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A154964 (3*a(n-1) + 6*a(n-2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A055327 (Triangle of rooted identity trees with n nodes and k leaves)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A316322 (Sum of piles of first n primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A045944 (Rhombic matchstick numbers: n*(3*n+2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A127816 (least k such that the remainder when 6^k is divided by k is n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005317 ((2^n + C(2*n,n))/2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A064118 (Numbers k such that the first k digits of e form a prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A325860 (Number of subsets of {1..n} such that every pair of distinct elements has a different quotient)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A073592 (Euler transform of negative integers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A025047 (Alternating compositions, i.e., compositions with alternating increases and decreases, starting with either an increase or a decrease)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A288253 (Number of heptagons that can be formed with perimeter n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A235488 (Squarefree numbers which yield zero when their prime factors are xored together)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A075213 (Number of polyhexes with n cells that tile the plane isohedrally but not by translation or by 180-degree rotation (Conway criterion))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A054377 : Primary pseudoperfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Kellner, Bernard C.; 'The equation denom(Bn) = n has only one solution'
- ^ Sloane, N. J. A. (ed.). "Sequence A006318 (Large Schröder numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 22 May 2016.
- ^ "Sloane's A000058 : Sylvester's sequence". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A083186 (Sum of first n primes whose indices are primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005260 (Sum_{0..n} binomial(n,k)^4)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A056877 (Number of polyominoes with n cells, symmetric about two orthogonal axes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A061801 ((7*6^n - 2)/5)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A152927 (Number of sets (in the Hausdorff metric geometry) at each location between two sets defining a polygonal configuration consisting of k 4-gonal polygonal components chained with string components of length 1 as k varies)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A037032 (Total number of prime parts in all partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A101301 (The sum of the first n primes, minus n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A332835 (Number of compositions of n whose run-lengths are either weakly increasing or weakly decreasing)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2 June 2022.
- ^ Sloane, N. J. A. (ed.). "Sequence A000230 (smallest prime p such that there is a gap of exactly 2n between p and next prime, or -1 if no such prime exists)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A004068 (Number of atoms in a decahedron with n shells)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001905 (From higher-order Bernoulli numbers: absolute value of numerator of D-number D2n(2n-1))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A214083 (floor(n!^(1/3)))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A001208 (solution to the postage stamp problem with 3 denominations and n stamps)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000081 (Number of unlabeled rooted trees with n nodes (or connected functions with a fixed point))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A039771 (Numbers k such that phi(k) is a perfect cube)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A024026 (3^n - n^3)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A235945 (Number of partitions of n containing at least one prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A354493 (Number of quantales on n elements, up to isomorphism)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A088144 (Sum of primitive roots of n-th prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000166 (Subfactorial or rencontres numbers, or derangements: number of permutations of n elements with no fixed points)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000240 (Rencontres numbers: number of permutations of [n] with exactly one fixed point)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000602 (Number of n-node unrooted quartic trees; number of n-carbon alkanes C(n)H(2n+2) ignoring stereoisomers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ ""Aztec Diamond"". Retrieved 20 September 2022.
- ^ Sloane, N. J. A. (ed.). "Sequence A082671 (Numbers n such that (n!-2)/2 is a prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A023811 (Largest metadrome (number with digits in strict ascending order) in base n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000990 (Number of plane partitions of n with at most two rows)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A164652 (Hultman numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A007530 (Prime quadruples: numbers k such that k, k+2, k+6, k+8 are all prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A057568 (Number of partitions of n where n divides the product of the parts)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A011757 (prime(n^2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A004799 (Self convolution of Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005920 (Tricapped prism numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000609 (Number of threshold functions of n or fewer variables)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A259793 (Number of partitions of n^4 into fourth powers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A006785 (Number of triangle-free graphs on n vertices)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002998 (Smallest multiple of n whose digits sum to n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005987 (Number of symmetric plane partitions of n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A023431 (Generalized Catalan Numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A217135 (Numbers n such that 3^n - 8 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A034897 : Hyperperfect numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A240736 (Number of compositions of n having exactly one fixed point)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A007070 (4*a(n-1) - 2*a(n-2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000412 (Number of bipartite partitions of n white objects and 3 black ones)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A027851 (Number of nonisomorphic semigroups of order n)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A003060 (Smallest number with reciprocal of period length n in decimal (base 10))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A008514 (4-dimensional centered cube numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A062198 (Sum of the first n semiprimes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A024012 (2^n - n^2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002845 (Number of distinct values taken by 2^2^...^2 (with n 2's and parentheses inserted in all possible ways))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ "Sloane's A051870 : 18-gonal numbers". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 12 June 2016.
- ^ Sloane, N. J. A. (ed.). "Sequence A045648 (Number of chiral n-ominoes in (n-1)-space, one cell labeled)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000127 (Maximal number of regions obtained by joining n points around a circle by straight lines. Also number of regions in 4-space formed by n-1 hyperplanes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A178084 (Numbers k for which 10k + 1, 10k + 3, 10k + 7, 10k + 9 and 10k + 13 are primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ a b Sloane, N. J. A. (ed.). "Sequence A007419 (Largest number not the sum of distinct n-th-order polygonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A100953 (Number of partitions of n into relatively prime parts such that multiplicities of parts are also relatively prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A226366 (Numbers k such that 5*2^k + 1 is a prime factor of a Fermat number 2^(2^m) + 1 for some m)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A319014 (1*2*3 + 4*5*6 + 7*8*9 + 10*11*12 + 13*14*15 + 16*17*18 + ... + (up to n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A055621 (Number of covers of an unlabeled n-set)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005915 (Hexagonal prism numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000522 (Total number of ordered k-tuples of distinct elements from an n-element set)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A104621 (Heptanacci-Lucas numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005449 (Second pentagonal numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A002982 (Numbers n such that n! - 1 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A030238 (Backwards shallow diagonal sums of Catalan triangle A009766)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A089046 (Least edge-length of a square dissectable into at least n squares in the Mrs. Perkins's quilt problem)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A065900 (Numbers n such that sigma(n) equals sigma(n-1) + sigma(n-2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Jon Froemke & Jerrold W. Grossman (February 1993). "A Mod-n Ackermann Function, or What's So Special About 1969?". The American Mathematical Monthly. 100 (2). Mathematical Association of America: 180–183. doi:10.2307/2323780. JSTOR 2323780.
- ^ Sloane, N. J. A. (ed.). "Sequence A052542 (2*a(n-1) + a(n-2))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A024069 (6^n - n^7)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A217076 (Numbers n such that (n^37-1)/(n-1) is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A302545 (Number of non-isomorphic multiset partitions of weight n with no singletons)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A277288 (Positive integers n such that n divides (3^n + 5))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A343971 (Numbers that are the sum of four positive cubes in four or more ways)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A034090 (Numbers k whose sum of proper divisors exceeds that of all smaller numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A058037 (Numbers k such that 3^k - k is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A064591 (Nonunitary perfect numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A007504 (Sum of the first n primes)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A053767 (Sum of the first n composite numbers)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A096711 (Number of balanced primes less than 10^n.)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A187220 (Gullwing sequence)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A046351 (Palindromic composite numbers with only palindromic prime factors)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A000612 (Number of P-equivalence classes of switching functions of n or fewer variables, divided by 2)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ (sequence A059801 in the OEIS)
- ^ Sloane, N. J. A. (ed.). "Sequence A002470 (Glaisher's function W(n))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A263341 (Triangle read by rows: T(n,k) is the number of unlabeled graphs on n vertices with independence number k)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A089085 (Numbers k such that (k! + 3)/3 is prime)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A011755 (Sum_{1..n} k*phi(k))". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A005448 (Centered triangular numbers: 3n(n-1)/2 + 1)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Sloane, N. J. A. (ed.). "Sequence A038823 (Number of primes between n*1000 and (n+1)*1000)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation.
- ^ Stein, William A. (10 February 2017). "The Riemann Hypothesis and The Birch and Swinnerton-Dyer Conjecture". wstein.org. Retrieved 6 February 2021.
1000 (number)
View on Grokipediafrom Grokipedia
1000 is the natural number following 999 and preceding 1001, equal to and the cube of 10.[1] It is an even composite number with prime factorization , consisting of six prime factors (three 2s and three 5s).[2] As the smallest four-digit number in the decimal system, 1000 holds significance in mathematics as a perfect cube, a Hamming number, and an abundant number, where the sum of its proper divisors (1340) exceeds the number itself by 340.[3]
In various numeral systems, 1000 is represented differently: in binary as 1111101000 (base 2), in octal as 1750 (base 8), and in hexadecimal as 3E8 (base 16).[2] The Roman numeral for 1000 is M, derived from the Latin mille ('thousand'), which also originates the modern 'mile' as one thousand paces (mille passus), a unit tied to footsteps through history.[4] It forms the basis for denoting thousands in historical and modern contexts, such as clock faces and book chapters.[5] In the International System of Units (SI), 1000 corresponds to the prefix "kilo-" (symbol k), multiplying a base unit by , as standardized by the International Bureau of Weights and Measures (BIPM).[6]
The English word "thousand" originates from Old English þūsend, akin to Proto-Germanic *þūsundī, meaning a large multitude or "swollen hundred," reflecting its historical use to denote a significant quantity.[7] Culturally, 1000 symbolizes completeness and vastness in expressions across languages, such as "a thousand thanks" (tusen takk in Norwegian) or "a thousand pardons" in English, emphasizing abundance or exaggeration.[1] In measurement and computing, it underpins scales like kilometers (1000 meters) and kilobytes (approximately 1000 bytes in decimal contexts), facilitating practical quantification in science and technology.[6]
This chart demonstrates how shifting digits across places multiplies their value by powers of 10, underscoring the system's scalability for numbers beyond 1000.[14]
The maximum value in this path is 9232, illustrating the conjecture's oscillatory behavior before converging.[35]
Notation and representation
Decimal system and place value
In the decimal system, also known as base-10, the number 1000 is defined as , representing one thousand units.[1] This positional notation relies on the powers of 10, where each digit's value depends on its position relative to the decimal point, enabling efficient representation of large quantities. The breakdown of 1000 illustrates this place value structure: it occupies the thousands place, which is the third position from the right in a whole number. Mathematically, , where the leading 1 signifies one group of 1,000 units, and the trailing zeros fill the hundreds, tens, and units places without adding value.[8] This system contrasts with non-positional notations, such as the Roman numeral M for 1000, by using zeros as placeholders to denote absence in lower places.[9] The historical evolution of decimal place value traces back to ancient Babylonian sexagesimal (base-60) numerals around 2000 BCE, which employed positional notation but lacked a zero symbol, leading to ambiguities in interpretation.[10] This progressed with the development of the Hindu-Arabic system in India between the 5th and 7th centuries CE, notably by Aryabhata (c. 499 CE) who introduced the modern place-value zero and accurate sine tables,[11] and Brahmagupta (628 CE) with the first arithmetic rules for zero and negative numbers,[12] where positional decimal notation incorporated the zero as a placeholder, fully enabling unambiguous place value.[13] Arabic mathematicians adopted and refined this zero-based decimal system by the 9th century, facilitating its transmission to Europe and global standardization.[9] A place value chart visually clarifies this for 1000:| Thousands | Hundreds | Tens | Units |
|---|---|---|---|
| 1 | 0 | 0 | 0 |
Representations in other numeral systems
In numeral systems other than the decimal base-10, which serves as the standard for everyday numerical representation, the number 1000 is expressed using bases that align closely with binary data processing in computing.[15] In binary (base-2), 1000 is represented as 1111101000, equivalent to .[16] This 10-bit sequence reflects the powers of 2 that sum to 1000, illustrating how binary encodes decimal values through bit positions. The hexadecimal (base-16) representation of 1000 is 3E8, calculated as .[16] Here, digits beyond 9 use letters (E for 14), providing a compact notation for binary equivalents since each hex digit corresponds to four binary digits. In octal (base-8), 1000 appears as 1750, derived from .[16] Octal groups binary digits into threes, offering another efficient shorthand for binary manipulation. To convert a decimal number like 1000 to another base, such as binary, apply the repeated division method: divide the number by the target base (2 for binary), record the remainder, and repeat with the quotient until it reaches zero; the binary representation is the remainders read from last to first.[17] For 1000:- 1000 ÷ 2 = 500 remainder 0
- 500 ÷ 2 = 250 remainder 0
- 250 ÷ 2 = 125 remainder 0
- 125 ÷ 2 = 62 remainder 1
- 62 ÷ 2 = 31 remainder 0
- 31 ÷ 2 = 15 remainder 1
- 15 ÷ 2 = 7 remainder 1
- 7 ÷ 2 = 3 remainder 1
- 3 ÷ 2 = 1 remainder 1
- 1 ÷ 2 = 0 remainder 1
Symbolic and historical notations
In the Roman numeral system, the number 1000 was classically represented by the symbol ↀ, an encircling form derived from Etruscan tally marks that enclosed a central stroke to denote a large grouping, as seen in ancient inscriptions and coins from the Republican era.[19] This evolved into variants like |ↂ|, where vertical bars flanked a reversed C to emphasize enclosure, used in classical texts and monuments up to the early Imperial period. By the medieval era, particularly from the 6th century onward as noted by grammarian Priscian, the simplified letter M—initially an abbreviation for mille (thousand)—became the standardized symbol, reflecting a shift toward alphabetic efficiency in manuscripts and legal documents.[19] Ancient Greek notations for 1000 varied by system. In the Attic (acrophonic) system, prevalent from the 7th to 4th centuries BCE, it was denoted by Χ (chi), standing for χίλια (chilia, thousand), often repeated for multiples like ΧΧ for 2000.[20] The later Ionic (alphabetic) system, emerging around the 4th century BCE and used in scientific works like those of Archimedes, represented 1000 as ͵α, where α (alpha, 1) received a sublinear stroke (͵) to indicate multiplication by 1000, with myria (M for 10,000) employed for higher orders in large computations.[21][22] In Chinese notation, 1000 is symbolized by the character 千 (qiān), which according to the Shuowen Jiezi (c. 100 CE) means "ten times one hundred" and is formed from 十 (ten) and 人 (person), possibly with phonetic origins or representing multitude in ancient scripts. In oracle bone inscriptions from the Shang dynasty (c. 1600–1046 BCE), it appears as a pictograph resembling rice stalks, evoking abundance.[23][24] This character integrated into the rod numeral system by the Warring States period (475–221 BCE), where counting rods on a board placed horizontal rods in the thousands position to form the equivalent of 千, facilitating place-value calculations in administrative and astronomical texts like the Nine Chapters on the Mathematical Art (c. 100 BCE).[25] Egyptian hieroglyphic notation for 1000 employed the lotus flower symbol (Gardiner sign M13), an additive decimal marker repeated as needed, as evidenced in temple inscriptions from the Old Kingdom (c. 2686–2181 BCE) onward, such as those at Edfu detailing offerings and measurements.[26] Mayan numerals, a vigesimal (base-20) system from the Classic period (c. 250–900 CE), approximated 1000 through stacked glyphs of dots (1 each) and bars (5 each), with a shell for zero; specifically, 1000 equates to 2 in the 360s place (two dots), 14 in the 20s place (two bars and four dots), and 0 in the ones place (shell), adjusting for their modified place values in calendrical codices like the Dresden Codex.[27] Modern English abbreviations for 1000, such as "k" and "thou," trace to practical notations in 15th-century trade ledgers, where "thou" shortened "thousand" for brevity in merchant accounts, evolving from Middle English scribal practices.[28] The "k" form, derived from Greek kilo (thousand), gained prevalence in the 19th century with the metric system's adoption (1795), appearing in scientific and financial contexts by the early 20th century to denote thousands efficiently.[28]Mathematical properties
Basic arithmetic and divisibility
The prime factorization of 1000 is .[29] This decomposition arises from expressing 1000 as , where .[29] The positive divisors of 1000 are 1, 2, 4, 5, 8, 10, 20, 25, 40, 50, 100, 125, 200, 250, 500, and 1000.[29] The sum of these divisors, denoted , equals 2340.[29] Multiples of 1000 include 1000, 2000, 3000, 4000, and so on, forming an arithmetic sequence with a common difference of 1000.[29] In basic arithmetic, multiplying 1000 by any positive integer yields a number formed by appending three zeros to , such as . Addition and subtraction with 1000 often highlight patterns in decimal representation; for example, and .[29] Due to its decimal representation ending in three zeros, 1000 is always divisible by 2 (last digit even), 4 (last two digits 00 divisible by 4), 5 (last digit 0), 8 (last three digits 000 divisible by 8), and 10 (last digit 0).[30]Number-theoretic characteristics
In number theory, 1000 exhibits several notable properties related to its prime factorization . Euler's totient function , which counts the number of positive integers up to 1000 that are coprime to 1000, evaluates to 400 using the formula , where the product is over distinct prime factors of .[31] This value arises from .[32] The sum-of-divisors function , which sums all positive divisors of 1000, equals 2340, computed multiplicatively as .[33] Since , 1000 is an abundant number, with abundance , distinguishing it from perfect numbers (where abundance is 0) and deficient numbers (where abundance is negative). Additionally, 1000 is a Harshad number (also known as a Niven number), as it is divisible by the sum of its decimal digits: and .[34] Under the Collatz conjecture, which posits that iteratively applying the rule—divide by 2 if even, or multiply by 3 and add 1 if odd—eventually reaches 1 for any positive integer, the hailstone sequence starting from 1000 has 111 steps:The maximum value in this path is 9232, illustrating the conjecture's oscillatory behavior before converging.[35]
Role in sequences and patterns
1000 holds a prominent position in the geometric sequence of powers of 10, where it equals and follows 1, 10, and 100.[1] This sequence arises naturally in decimal notation and scaling, with each term multiplying the previous by 10. Although 1000 is not itself a factorial, it lies between consecutive factorial values: and .[36] Factorials grow rapidly, and 1000 approximates the scale of smaller ones but exceeds none exactly in this range.[37] In the Fibonacci sequence, defined by , , and for , 1000 approximates and falls short of .[38] This placement highlights 1000's proximity to terms in this classic recursive pattern, often studied for its growth approximating the golden ratio. The decimal expansion of π is conjectured to contain every finite sequence of digits. The sequence 1000 first appears starting at the 854th decimal place after the decimal point (i.e., digits 854–857: 1000).[39] This occurrence exemplifies the suspected normalcy of π's digits, where such four-digit runs emerge without deliberate pattern.[40] 1000 also relates to other figurate number sequences, such as triangular numbers given by . It exceeds but precedes .[41] Similarly, among perfect squares , 1000 is between and . These positions illustrate 1000's interpolation within additive and multiplicative patterns fundamental to number theory.Applications in science and measurement
In the metric system
In the International System of Units (SI), the number 1000 serves as the foundational scaling factor for the prefix "kilo-", which denotes multiplication by . This prefix is applied to base units to form derived units such as the kilometer (km), where 1 km equals 1000 meters, and the kilogram (kg), where 1 kg equals 1000 grams. The kilo- prefix is one of the original metric prefixes established to facilitate decimal-based measurements, enabling straightforward conversions across scales. The metric system, including the kilo- prefix, was formalized during the French Revolution in 1795 as part of efforts to create a universal, decimal-based system of measurement. The term "kilo-" derives from the Greek word "chilia," meaning thousand, reflecting its role in denoting quantities of one thousand. This adoption was driven by the desire for a rational system aligned with the decimal nature of the number 1000, which simplifies arithmetic operations in scientific and everyday applications. Practical examples of the kilo- prefix abound in various SI units. For instance, 1000 liters form 1 cubic meter, a key relation in volume measurements for water and other substances. Similarly, 1000 hertz equals 1 kilohertz, commonly used in frequency contexts like audio and electronics. These applications underscore 1000's utility in scaling measurements without altering the base unit's fundamental definition. The alignment of 1000 with the base-10 decimal system enhances its effectiveness in the metric framework, allowing intuitive scaling—such as shifting three decimal places—for conversions between units like grams to kilograms or meters to kilometers. This decimal compatibility was a deliberate design choice in the metric system's development to promote ease of use in education, trade, and science. Despite its widespread use, exceptions exist in certain domains; for example, the kilosecond (ks, equal to 1000 seconds) is rarely employed in everyday or scientific contexts, where minutes, hours, or other non-metric time units predominate due to historical conventions in timekeeping.In computing and data storage
In computing, the number 1000 plays a significant role in data storage conventions, particularly in the distinction between decimal and binary prefixes for byte measurements. Traditionally, a kilobyte (KB) in computing contexts has been defined as 1024 bytes (2^10), reflecting the binary nature of digital systems where memory and storage are organized in powers of two. This convention arose because 1024 is the nearest power of two to 1000, facilitating efficient addressing in early computers. However, to align with the International System of Units (SI) where "kilo" denotes 10^3, the International Electrotechnical Commission (IEC) standardized in 1998 that 1 kilobyte (kB) equals exactly 1000 bytes, introducing the binary prefix "kibibyte" (KiB) for 1024 bytes to avoid ambiguity.[42][43] This decimal-binary divide extends to larger units, influencing storage device marketing and operating system reporting. Hard drive manufacturers, following industry standards, label capacities using decimal prefixes; for instance, 1 terabyte (TB) is marketed as 10^12 bytes (1000^4), which operating systems often display in binary terms as approximately 931 gibibytes (GiB, or 2^40 bytes). This practice, established since the late 20th century and unchanged as of 2025, leads to perceived discrepancies in usable space but ensures consistency with SI scaling for consumer-facing specifications. Historically, the 1024-byte kilobyte was adopted in the 1960s as computing pioneers adapted binary addressing for memory blocks, a convention that persisted until the IEC's clarification pushed decimal usage in storage labeling.[44][45] Beyond storage, 1000 serves as a practical constant in programming and system design. For time measurements, 1 second is defined as 1000 milliseconds (ms), a decimal-based unit widely used in software for timing functions, such as delays or timestamps in languages like Java and Python. In memory addressing, RAM capacities are typically expressed in binary multiples (e.g., 1 GB = 1024 MB), but 1000 is often approximated in rough estimates or user interfaces for simplicity, such as describing "1 GB" as about 1000 MB in educational contexts. Additionally, in algorithm benchmarking, 1000 elements frequently serve as an initial dataset size for evaluating sorting algorithms like quicksort or mergesort, providing a manageable scale to assess time complexity before scaling to larger inputs.[46][47][48]Other scientific contexts
In astronomy, the scale of 1000 light-years provides a benchmark for distances to nearby stellar structures within the Milky Way. For example, the Hyades open cluster, the nearest such cluster to Earth, lies approximately 150 light-years away, while 1000 light-years extends toward the outer regions of the Orion Arm, our local spiral arm that spans about 3500 light-years in width.[49][50] In physics, particularly particle physics, 1000 electronvolts (eV) defines 1 kiloelectronvolt (keV), a unit commonly used to measure energy thresholds for interactions such as electron recoils in detectors. This scale is relevant for phenomena like soft X-ray emissions and low-energy particle detections, where thresholds around 1 keV enable studies of rare events, including potential dark matter signals in liquid argon time projection chambers.[51][52] In biology, 1000 base pairs of DNA correspond to one kilobase (kb), a standard unit for quantifying the length of genetic segments in genomic analyses. Additionally, population genetics studies often employ timescales of around 1000 generations to estimate divergence between human populations, providing insights into evolutionary histories through linkage disequilibrium patterns.[53][54] In chemistry, 1000 parts per million (ppm) serves as a common standard for expressing low concentrations of solutes, equivalent to 0.1% by weight or volume, and is widely used in analytical standards for trace element detection.[55] In recent planetary defense efforts post-2020, benchmarks for asteroid detection focus on objects larger than 1 kilometer (1000 meters) in diameter, as these pose potential global impact risks; NASA's strategies emphasize characterizing all such near-Earth objects to enable mitigation planning.[56]Historical and cultural significance
In chronology and history
In medieval Europe, the approach of the year 1000 AD elicited widespread apocalyptic fears among clergy and laity, fueled by interpretations of biblical prophecies such as those in the Book of Revelation, which some linked to the completion of a thousand-year reign of peace before the end times.[57] These anxieties, often termed the "Y1K problem" by modern historians, manifested in heightened religious fervor, increased pilgrimages, and donations to churches, though contemporary records show no uniform societal collapse and debate persists on the extent of panic due to sparse documentation.[58] This phenomenon has been analogized to the Y2K computer glitch fears at the turn of the 21st century, where technical uncertainties amplified millennial dread, highlighting recurring human responses to round-number transitions.[58] The year 1000 AD also served as a pivotal marker in calendar systems like the Julian and later Gregorian calendars, which count years from the Anno Domini epoch without a year zero, making AD 1 to AD 1000 the precise span of the first millennium.[59] This round number symbolized the end of an era in Christian historiography, prompting reflections on divine history and the passage of time, with the Julian calendar—still in use across much of Europe—providing the framework for these computations until the Gregorian reform in 1582.[60] Millennium celebrations in the year 2000 AD, observed globally with fireworks, concerts, and official events, commemorated the 1000-year anniversary from 1000 AD as the close of the second millennium (AD 1001–2000), blending secular festivity with echoes of historical millennialism despite purists noting the third millennium began in 2001.[61] In archaeological timelines of the Near East, the Late Bronze Age (c. 1600–1200 BCE) was a period of interconnected city-states, palace economies, and international trade networks spanning Mesopotamia, Anatolia, and the Levant, ending with widespread collapse around 1200 BCE.[62] The year 1000 BCE marks a key point in the subsequent early Iron Age, serving as a benchmark for studying transitions from the Bronze Age collapse, with artifacts such as cuneiform tablets and bronze weaponry illustrating the prior era's peak cultural complexity.[63] Modern historiography frequently employs 1000 AD as a benchmark for demographic analysis, with estimates placing the global population at approximately 300 million, reflecting slow growth amid medieval plagues, famines, and regional stability in areas like China and the Islamic world.[64] This figure, derived from historical records and archaeological proxies, highlights 1000 AD's role in tracing long-term population trends, such as Europe's recovery from the fall of Rome and Asia's dominance in world totals.[64]Symbolic meanings across cultures
In Abrahamic religions, particularly Christianity, the number 1000 holds profound eschatological significance through the concept of the millennial reign described in the Book of Revelation. Revelation 20:1-6 depicts Satan being bound for a thousand years, during which Christ reigns with resurrected saints in a period of unparalleled peace, justice, and restoration on earth, symbolizing the ultimate triumph of divine order over chaos.[65] This imagery underscores themes of completeness and divine fulfillment, influencing theological interpretations across premillennial, postmillennial, and amillennial traditions. In Eastern traditions, 1000 symbolizes spiritual perfection and boundless enlightenment. In Hinduism and Buddhism, the thousand-petaled lotus, known as sahasrara, represents the crown chakra at the pinnacle of the subtle body, embodying the full blossoming of consciousness, purity, and union with the divine.[66] Similarly, in Mahayana Buddhism, the bodhisattva Avalokiteshvara is depicted in his thousand-armed form, with each arm signifying the infinite capacity for compassionate action to aid all suffering beings across the universe, while the thousand eyes in the palms denote all-seeing wisdom.[67] In Chinese culture, 1000 evokes ideas of abundance, completeness, and enduring gratitude. The idiom 千恩万谢 (qiān ēn wàn xiè), meaning "a thousand gratitudes and ten thousand thanks," expresses overwhelming appreciation, using hyperbolic multiples to convey totality and depth of emotion in interpersonal relations.[68] Likewise, the preserved duck egg known as pidan, or "thousand-year egg," despite its shorter actual preservation period, symbolizes longevity and prosperity through its transformation into a jewel-like form resembling gold and jade—auspicious emblems of wealth and eternal life in Confucian and folk traditions.[69] In Norse mythology and sagas, large numbers like 1000 often function symbolically to denote vastness and overwhelming scale, particularly in depictions of fleets and armies that represent communal power and fateful endeavors. Ships themselves embody freedom, destiny, and the perilous journey between worlds, with exaggerated numerics amplifying the epic scope of heroic voyages and conquests.[70] In modern contexts, 1000 serves as a milestone marker for personal and collective achievements, signifying culmination, resilience, and new phases. For instance, reaching 1000 days of sobriety in recovery programs symbolizes sustained transformation and hope, while broader cultural uses—like "1000 followers" on social platforms or annual "1000 best" lists—highlight progression toward wholeness and recognition.[71]In literature and arts
In literature, the number 1000 prominently features in the framing narrative of One Thousand and One Nights, a collection of Middle Eastern folk tales compiled during the Islamic Golden Age. The story revolves around Scheherazade, who marries the king Shahryar and averts her execution by captivating him with incomplete tales each night, sustaining this practice for 1001 nights until he spares her life and they marry.[72] This structure symbolizes endurance and the transformative power of storytelling, influencing global literature from the 18th century onward through translations like Antoine Galland's French edition. Poetry often employs 1000 to evoke multiplicity, mystery, or emotional depth. In Francis William Bourdillon's 1873 poem "The Night Has a Thousand Eyes," the number contrasts superficial observations with profound insight: "The night has a thousand eyes, / And the day but one; / Yet the light of the bright world dies / With the dying sun. / The mind has a thousand eyes."[73] Originally published in Aucassin and Nicolette, this work highlights 1000 as a metaphor for hidden truths, later gaining fame through recitations in literature and media. Similarly, Safia Elhillo's contemporary poem "1000" (2019) uses the number to explore themes of youth, shame, and fragmented identity in girlhood, drawing on personal and cultural introspection.[74] In music, 1000 appears in titles and lyrics to convey vast distance or longing. Vanessa Carlton's 2002 hit "A Thousand Miles," from her debut album Be Not Nobody, features the refrain "If I could fall into the sky / Do you think time would pass me by? / 'Cause you know I'd walk a thousand miles / If I could just see you tonight," capturing themes of unrequited love and determination; the piano-driven track topped charts worldwide, earning platinum certification.[75] N.E.R.D and Future's 2017 collaboration "1000," from the album No One Ever Really Dies, uses the number in a hip-hop context to denote abundance and rebellion, with lyrics like "Assemblin' a riot / Tempting and circling defiance," reflecting chaotic energy.[76] Visual arts have incorporated 1000 for structural or commemorative purposes. Randall Munroe's webcomic xkcd issue #1000 (2012) arranges over 1,000 recurring characters into the shape of the numeral "1000," celebrating the milestone while embedding a connect-the-dots puzzle in binary code that spells "Connect the dots"; this self-referential piece exemplifies webcomics' blend of humor and mathematics.[77] In film and television, 1000 often marks historical turning points or epic scales. Nicolas Winding Refn's Valhalla Rising (2009) is set in 1000 AD, depicting a one-eyed Norse warrior's brutal escape from captivity in medieval Scotland and his voyage with Christian crusaders to an unknown land (implied as North America), exploring themes of paganism versus emerging Christianity amid visions and violence.[78] The film's stark, atmospheric cinematography underscores the era's harsh transitions at the dawn of the second millennium.Related numbers in the thousands
Numbers from 1001 to 1099
The integers from 1001 to 1099 represent a narrow range within the thousands, featuring several numbers with distinct mathematical properties, including factorizations, compositeness, and primality. This segment includes composite numbers like 1001, which factors as , making it the product of three consecutive primes.[79] Similarly, 1008 is a highly composite number, possessing more divisors (30 in total) than any smaller positive integer, with its prime factorization .[80] Another notable entry is 1024, a power of 2 expressed as , which also equals the square of 32 ().[81][82] Patterns within this range highlight structural curiosities, such as palindromic numbers that read the same forwards and backwards, including 1001.[83] These palindromes contribute to the aesthetic and symmetric properties observed in decimal representations around this threshold. The range contains 16 prime numbers: 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, and 1097.[84] These primes are distributed unevenly, with clusters around 1009–1021 and 1091–1097, illustrating the irregular spacing typical of prime gaps in this magnitude. Historically, 1089 stands out as a "magic number" in recreational mathematics, arising consistently from a digit-reversal trick: select any three-digit number with distinct first and last digits (differing by at least 2), subtract its reverse from it (or vice versa to ensure a positive result), then add the reverse of that difference to itself, yielding 1089 in nearly all cases.[85] This property, rooted in the arithmetic of nine-times multiples and carrying over in subtraction, has intrigued mathematicians since its popularization in the early 20th century.Numbers from 1100 to 1199
The range from 1100 to 1199 encompasses 100 consecutive integers, evenly distributed with 50 even numbers and 50 odd numbers, reflecting the standard alternation in the natural number sequence. Notable multiples of 100 within this interval include 1100, which factors as . Among the key integers in this range, 1111 stands out as the repunit , consisting of four repeated digits of 1, and it factors algebraically as .[86] Another significant number is 1152, which exemplifies Lagrange's four-square theorem stating that every natural number can be represented as the sum of four integer squares; one such representation is .[87] The prime numbers in this range are: 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, and 1193, totaling 12 primes.[88] In a historical context, 1144 marks the year of the Siege of Edessa (November 28–December 24, 1144), when Muslim forces under Imad al-Din Zengi captured the Crusader city of Edessa, an event that prompted Pope Eugene III to call for the Second Crusade in 1145.[89]Numbers from 1200 to 1299
The integers from 1200 to 1299 encompass a range of numbers with various mathematical properties, including primes, composites with special divisor structures, and figures notable in sequences and scientific applications. This hundred includes 15 prime numbers: 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, and 1297.[90][91] Among the composites, 1210 stands out as part of the amicable pair (1184, 1210), where the sum of the proper divisors of each equals the other number.[92] Similarly, 1225 is both the square of 35 () and the 49th triangular number (), making it a square triangular number.[93][94] It is also the smallest number expressible as the sum of four cubes of integers in three distinct ways: .[92] Additionally, 1260 is a highly composite number, being the smallest with exactly 36 divisors, and its prime factorization is .[95][96] Patterns in this range include 1200 as a round multiple of 100 (specifically, ), often used in approximations or scaling in applied contexts.[92] The triangular sequence continues with 1225 as noted, highlighting intersections between polygonal number families. In scientific applications, 1240 nm represents a key wavelength in near-infrared optics, corresponding to the conversion factor eV·nm for photon energy calculations, where is Planck's constant and is the speed of light; this value facilitates conversions in quantum mechanics and spectroscopy.[97] It also appears in diode and Raman lasers for applications like telecommunications and material processing.[98]Numbers from 1300 to 1399
The integers from 1300 to 1399 constitute a century of numbers in the decimal system, often referred to as the thirteen hundreds due to the hundreds digit being 13 followed by tens and units digits ranging from 00 to 99. This range exhibits various mathematical properties, including multiples of smaller integers and perfect powers, while also encompassing historically significant years. Key numbers within this range include 1331, which is the cube of 11 since , and 1369, the square of 37 as .[99][100] 1321, while not a perfect power, is a prime number notable for its proximity to 1331. The range features patterns related to divisibility by 13; for instance, 1300 = 13 × 100, and subsequent multiples like 1313 = 13 × 101 and 1326 = 13 × 102 illustrate this recurrence every 13 units. Prime numbers in this interval are 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, and 1399, totaling 11 primes.[101] In historical chronology, the years 1347 to 1351 fall within this range and correspond to the height of the Black Death pandemic in Europe, a bubonic plague outbreak that began in 1346 and caused widespread devastation.[102]Numbers from 1400 to 1499
The integers from 1400 to 1499 constitute a sequential range of 100 numbers in the decimal system, where 1400 can be factored as , highlighting its position as a multiple of 100 within the thousands. This range exhibits a balanced pattern of even and odd integers, with exactly 50 even numbers due to the alternation in any 100 consecutive integers. Notable among these is 1444, which is a perfect square equal to .[103] Another key number is 1470, a composite integer with the prime factorization , resulting in 24 positive divisors and classifying it as an abundant number since the sum of its proper divisors exceeds 1470.[104] This structure exemplifies a pattern of small prime factors raised to increasing powers, common in numbers with high divisor counts. The range contains 17 prime numbers: 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, and 1499.[105] In computing contexts, 1499 often appears as a performance benchmark score for mid-tier processors in tools like Geekbench, marking a threshold just below 1500 for evaluating single-threaded capabilities.[106]Numbers from 1500 to 1599
The integers from 1500 to 1599 represent a narrow band within the thousands, notable for specific mathematical properties and practical applications. Among these, 1500 stands out as a round number in the metric system, frequently employed in measurements such as 1500 meters (1.5 kilometers) or 1500 grams (1.5 kilograms) for its alignment with decimal prefixes like kilo-.[107] Key numbers in this range include 1521, which is the square of 39 (), making it a perfect square useful in geometric calculations.[108] Similarly, 1536 is a highly composite number with the prime factorization , rendering it significant in computing contexts like memory addressing due to its power-of-two dominance.[109] This range contains 12 prime numbers: 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, and 1597. These primes contribute to number theory explorations, such as their distribution patterns.[110] In scientific applications, 1568 MHz serves as a critical frequency in global navigation satellite systems (GNSS), often used as a local oscillator or intermediate frequency in receivers to simultaneously process GPS L1 (1575.42 MHz) and BeiDou B1I (1561.098 MHz) signals, enabling interference-resistant multi-constellation positioning.[111]Numbers from 1600 to 1699
The integers from 1600 to 1699 form a range notable for specific mathematical properties and historical associations. This century-spanning sequence begins with 1600, a perfect square equal to .[112] Within the range, 1680 stands out as a highly composite number, possessing 40 positive divisors—more than any smaller positive integer—and factoring as .[95] The decimal notations of these numbers, prefixed by "16," subtly connect to the hexadecimal (base-16) numeral system, where 16 serves as the radix. In hexadecimal representation, 1600 converts to 640_{16}, while 1699 becomes 6A3_{16}. (detailed in Representations in other numeral systems) This range contains 15 prime numbers, each divisible only by 1 and itself: 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, and 1699.[113] The years 1600 to 1699 delineate the early 17th century (1601–1700), a foundational period in the Gregorian calendar.[114]Numbers from 1700 to 1799
The integers from 1700 to 1799 encompass a range of numbers with various mathematical properties, including primes, perfect squares, and curiosities in number theory. This interval includes 12 prime numbers, which are fundamental building blocks in arithmetic and appear in many cryptographic and computational contexts.[113] Among the notable composites, 1729 stands out as the Hardy-Ramanujan number, also known as the smallest taxicab number of order 2. It is the smallest positive integer that can be expressed as the sum of two positive cubes in two distinct ways: . This property was highlighted in a famous anecdote involving mathematician Srinivasa Ramanujan, who identified it during a conversation with G. H. Hardy in 1919.[115] The number's significance extends to Diophantine equations and partition theory, underscoring its role in additive number theory.[115] Another key number in this range is 1764, a perfect square equal to . As a square, it exemplifies quadratic residues and appears in geometric contexts, such as the area of a square with side length 42 units.[116] The prime numbers in the range 1700 to 1799 are: 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, and 1789. These primes exhibit properties like twin primes (e.g., 1721 and 1723; 1787 and 1789). Their distribution aligns with the prime number theorem's predictions for density around this magnitude, approximately , yielding about 13 primes, close to the observed 12.[113][117] This range corresponds to the 18th century, a period of Enlightenment-era mathematical advancements, including Euler's work on number theory and analysis, which influenced the study of primes and sums of powers like those defining 1729.[118]Numbers from 1800 to 1899
The integers from 1800 to 1899 encompass a range notable for various mathematical properties and historical associations with technological advancements. This century marker in numbering highlights multiples and squares within everyday calculations, while also tying into the era's mechanical innovations. 1800 exemplifies a straightforward multiplicative pattern as , reflecting its role as a round number in scaling and measurement systems common in the 19th century. Similarly, 1849 stands out as a perfect square, specifically , which has applications in geometric computations and early engineering designs.[119] Another key number, 1875, demonstrates fractional patterns through its decimal representation: , a terminating decimal that simplifies neatly in fractional arithmetic and appears in proportional calculations like measurements or ratios.[120] Within this range, there are 12 prime numbers: 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, and 1889.[121] These primes contribute to the density of prime distribution in the low thousands, influencing number theory explorations during the period. In the context of the Industrial Revolution, numbers in the 1800s often related to machinery outputs; by 1800, Britain's steam engines collectively produced around 10,000 horsepower, enabling faster production in factories and symbolizing the shift to mechanized power.[122]Numbers from 1900 to 1999
The integers from 1900 to 1999 form a century of numbers often collectively referred to as spanning the 20th century in popular usage, encompassing significant mathematical properties and patterns within the thousands.[123] This range includes 100 consecutive integers, where even numbers alternate predictably and multiples of 5 end in 0 or 5, contributing to basic arithmetic structures used in calculations throughout the era. Notable perfect squares in this range include 1936, which is equal to .[124] Leap year patterns are evident, as 1900 itself was not a leap year due to the Gregorian rule excluding century years not divisible by 400, while subsequent years like 1904, 1908, 1912, 1916, 1920, 1924, 1928, 1932, 1936, 1940, 1944, 1948, 1952, 1956, 1960, 1964, 1968, 1972, 1976, 1980, 1984, 1988, 1992, and 1996 each added February 29, creating a rhythmic cycle every four years interrupted only at the century boundary.[125] For instance, 1960 was a leap year aligning with this pattern.[126] The range contains 14 prime numbers, distributed as follows: 1901, 1907, 1913, 1931, 1933, 1937, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999. These primes exhibit typical density for this magnitude, with varying gaps including a notable 22-unit gap between 1951 and 1973. The number 1999 gained additional cultural significance due to its proximity to the Year 2000 problem, or Y2K bug, a potential computing issue arising from two-digit year representations that could fail when transitioning from 1999 to 2000, prompting widespread remediation efforts in software and systems worldwide.[127]Prime numbers in the range 1001–1999
The prime numbers between 1001 and 1999 inclusive total 135, representing the difference π(1999) − π(1000) = 303 − 168.[128] This count aligns closely with the prime number theorem's approximation of roughly 999 / ln(1500) ≈ 137 primes in the interval, illustrating the decreasing density of primes as numbers grow larger.[129] The complete list of these primes is as follows:[91] 1009, 1013, 1019, 1021, 1031, 1033, 1039, 1049, 1051, 1061, 1063, 1069, 1087, 1091, 1093, 1097, 1103, 1109, 1117, 1123, 1129, 1151, 1153, 1163, 1171, 1181, 1187, 1193, 1201, 1213, 1217, 1223, 1229, 1231, 1237, 1249, 1259, 1277, 1279, 1283, 1289, 1291, 1297, 1301, 1303, 1307, 1319, 1321, 1327, 1361, 1367, 1373, 1381, 1399, 1409, 1423, 1427, 1429, 1433, 1439, 1447, 1451, 1453, 1459, 1471, 1481, 1483, 1487, 1489, 1493, 1499, 1511, 1523, 1531, 1543, 1549, 1553, 1559, 1567, 1571, 1579, 1583, 1597, 1601, 1607, 1609, 1613, 1619, 1621, 1627, 1637, 1657, 1663, 1667, 1669, 1693, 1697, 1699, 1709, 1721, 1723, 1733, 1741, 1747, 1753, 1759, 1777, 1783, 1787, 1789, 1801, 1811, 1823, 1831, 1847, 1861, 1867, 1871, 1873, 1877, 1879, 1889, 1901, 1907, 1913, 1931, 1933, 1949, 1951, 1973, 1979, 1987, 1993, 1997, 1999. These primes exhibit typical distribution patterns for this magnitude, with all being odd and none divisible by small primes like 3 or 5, consistent with the fundamental theorem of arithmetic for numbers greater than 5.[129] The largest gap between consecutive primes in the range is 34, occurring between 1327 and 1361.[130] Twin prime pairs, where primes differ by 2, appear multiple times, including (1031, 1033), (1061, 1063), (1151, 1153), and (1997, 1999).[91] Notable subsets include Sophie Germain primes, where both p and 2p + 1 are prime; examples in this range are 1013 (with 2027), 1031 (with 2063), 1049 (with 2099), and 1997 (with 3995).[131] Computational sieving methods, such as the Sieve of Eratosthenes, have verified this list exhaustively, with results stable since early 20th-century calculations and reconfirmed through modern algorithms up to 2025.[128]References
- https://en.wiktionary.org/wiki/%E5%8D%83
