Recent from talks
Nothing was collected or created yet.
Isotopes of copper
View on Wikipedia
| |||||||||||||||||||||||||||||||||
| Standard atomic weight Ar°(Cu) | |||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 known radioisotopes from 55Cu to 84Cu. The most stable radioisotope, 67Cu, has a half-life of only 61.83 hours, then follow 64Cu at 12.70 hours and 61Cu at 3.34 hours. The others have half-lives all under an hour and most under a minute. The isotopes with mass below 63 generally undergo positron emission and electron capture to nickel isotopes, while isotopes with mass above 65 generally undergo β− decay to zinc isotopes. The single example in between, 64Cu, decays both ways.
There are at least 10 metastable isomers of copper, of which the most stable is 68mCu with a half-life of 3.75 minutes.
List of isotopes
[edit]
| Nuclide [n 1] |
Z | N | Isotopic mass (Da)[4] [n 2][n 3] |
Half-life[1] |
Decay mode[1] [n 4] |
Daughter isotope [n 5] |
Spin and parity[1] [n 6][n 7] |
Natural abundance (mole fraction) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy[n 7] | Normal proportion[1] | Range of variation | |||||||||||||||||
| 55Cu | 29 | 26 | 54.96604(17) | 55.9(15) ms | β+ | 55Ni | 3/2−# | ||||||||||||
| β+, p (?%) | 54Co | ||||||||||||||||||
| 56Cu | 29 | 27 | 55.9585293(69) | 80.8(6) ms | β+ (99.60%) | 56Ni | (4+) | ||||||||||||
| β+, p (0.40%) | 55Co | ||||||||||||||||||
| 57Cu | 29 | 28 | 56.94921169(54) | 196.4(7) ms | β+ | 57Ni | 3/2− | ||||||||||||
| 58Cu | 29 | 29 | 57.94453228(60) | 3.204(7) s | β+ | 58Ni | 1+ | ||||||||||||
| 59Cu | 29 | 30 | 58.93949671(57) | 81.5(5) s | β+ | 59Ni | 3/2− | ||||||||||||
| 60Cu | 29 | 31 | 59.9373638(17) | 23.7(4) min | β+ | 60Ni | 2+ | ||||||||||||
| 61Cu | 29 | 32 | 60.9334574(10) | 3.343(16) h | β+ | 61Ni | 3/2− | ||||||||||||
| 62Cu | 29 | 33 | 61.9325948(07) | 9.672(8) min | β+ | 62Ni | 1+ | ||||||||||||
| 63Cu | 29 | 34 | 62.92959712(46) | Stable | 3/2− | 0.6915(15) | |||||||||||||
| 64Cu | 29 | 35 | 63.92976400(46) | 12.7004(13) h | β+ (61.52%) | 64Ni | 1+ | ||||||||||||
| β− (38.48%) | 64Zn | ||||||||||||||||||
| 65Cu | 29 | 36 | 64.92778948(69) | Stable | 3/2− | 0.3085(15) | |||||||||||||
| 66Cu | 29 | 37 | 65.92886880(70) | 5.120(14) min | β− | 66Zn | 1+ | ||||||||||||
| 66mCu | 1154.2(14) keV | 600(17) ns | IT | 66Cu | (6)− | ||||||||||||||
| 67Cu | 29 | 38 | 66.92772949(96) | 61.83(12) h | β− | 67Zn | 3/2− | ||||||||||||
| 68Cu | 29 | 39 | 67.9296109(17) | 30.9(6) s | β− | 68Zn | 1+ | ||||||||||||
| 68mCu | 721.26(8) keV | 3.75(5) min | IT (86%) | 68Cu | 6− | ||||||||||||||
| β− (14%) | 68Zn | ||||||||||||||||||
| 69Cu | 29 | 40 | 68.929429267(15) | 2.85(15) min | β− | 69Zn | 3/2− | ||||||||||||
| 69mCu | 2742.0(7) keV | 357(2) ns | IT | 69Cu | (13/2+) | ||||||||||||||
| 70Cu | 29 | 41 | 69.9323921(12) | 44.5(2) s | β− | 70Zn | 6− | ||||||||||||
| 70m1Cu | 101.1(3) keV | 33(2) s | β− (52%) | 70Zn | 3− | ||||||||||||||
| IT (48%) | 70Cu | ||||||||||||||||||
| 70m2Cu | 242.6(5) keV | 6.6(2) s | β− (93.2%) | 70Zn | 1+ | ||||||||||||||
| IT (6.8%) | 70Cu | ||||||||||||||||||
| 71Cu | 29 | 42 | 70.9326768(16) | 19.4(14) s | β− | 71Zn | 3/2− | ||||||||||||
| 71mCu | 2755.7(6) keV | 271(13) ns | IT | 71Cu | (19/2−) | ||||||||||||||
| 72Cu | 29 | 43 | 71.9358203(15) | 6.63(3) s | β− | 72Zn | 2− | ||||||||||||
| 72mCu | 270(3) keV | 1.76(3) μs | IT | 72Cu | (6−) | ||||||||||||||
| 73Cu | 29 | 44 | 72.9366744(21) | 4.20(12) s | β− (99.71%) | 73Zn | 3/2− | ||||||||||||
| β−, n (0.29%) | 72Zn | ||||||||||||||||||
| 74Cu | 29 | 45 | 73.9398749(66) | 1.606(9) s | β− (99.93%) | 74Zn | 2− | ||||||||||||
| β−, n (0.075%) | 73Zn | ||||||||||||||||||
| 75Cu | 29 | 46 | 74.94152382(77) | 1.224(3) s | β− (97.3%) | 75Zn | 5/2− | ||||||||||||
| β−, n (2.7%) | 74Zn | ||||||||||||||||||
| 75m1Cu | 61.7(4) keV | 0.310(8) μs | IT | 75Cu | 1/2− | ||||||||||||||
| 75m2Cu | 66.2(4) keV | 0.149(5) μs | IT | 75Cu | 3/2− | ||||||||||||||
| 76Cu[5] | 29 | 47 | 75.9452370(21) | 1.27(30) s | β− (?%) | 76Zn | (1,2) | ||||||||||||
| β−, n (?%) | 75Zn | ||||||||||||||||||
| 76mCu[5] | 64.8(25) keV | 637.7(55) ms | β− (?%) | 76Zn | 3− | ||||||||||||||
| β−, n (?%) | 75Zn | ||||||||||||||||||
| IT (10–17%) | 76Cu | ||||||||||||||||||
| 77Cu | 29 | 48 | 76.9475436(13) | 470.3(17) ms | β− (69.9%) | 77Zn | 5/2− | ||||||||||||
| β−, n (30.1%) | 76Zn | ||||||||||||||||||
| 78Cu | 29 | 49 | 77.9519206(81)[6] | 330.7(20) ms | β−, n (50.6%) | 77Zn | (6−) | ||||||||||||
| β− (49.4%) | 78Zn | ||||||||||||||||||
| 79Cu | 29 | 50 | 78.95447(11) | 241.3(21) ms | β−, n (66%) | 78Zn | (5/2−) | ||||||||||||
| β− (34%) | 79Zn | ||||||||||||||||||
| 80Cu | 29 | 51 | 79.96062(32)# | 113.3(64) ms | β−, n (59%) | 79Zn | |||||||||||||
| β− (41%) | 80Zn | ||||||||||||||||||
| 81Cu | 29 | 52 | 80.96574(32)# | 73.2(68) ms | β−, n (81%) | 80Zn | 5/2−# | ||||||||||||
| β− (19%) | 81Zn | ||||||||||||||||||
| 82Cu | 29 | 53 | 81.97238(43)# | 34(7) ms | β− | 82Zn | |||||||||||||
| 83Cu | 29 | 54 | 82.97811(54)# | 21# ms [>410 ns] | 5/2−# | ||||||||||||||
| 84Cu[7] | 29 | 55 | 83.98527(54)# | ||||||||||||||||
| This table header & footer: | |||||||||||||||||||
- ^ mCu – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^
Modes of decay:
IT: Isomeric transition n: Neutron emission p: Proton emission - ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ a b # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
Copper nuclear magnetic resonance
[edit]Both stable isotopes of copper (63Cu and 65Cu) have nuclear spin of 3/2−, and thus produce nuclear magnetic resonance spectra, although the spectral lines are broad due to quadrupolar broadening. 63Cu is the more sensitive nucleus while 65Cu yields very slightly narrower signals. Usually though 63Cu NMR is preferred.[8]
Copper-64 and other potential medical isotopes
[edit]Copper offers a relatively large number of radioisotopes that are potentially useful for nuclear medicine.
There is growing interest in the use of 64Cu, 62Cu, 61Cu, and 60Cu for diagnostic purposes and 67Cu and 64Cu for targeted radiotherapy. For example, 64Cu has a longer half-life than most positron-emitters (12.7 hours) and is thus ideal for diagnostic PET imaging of biological molecules.[9]
See also
[edit]Daughter products other than copper
References
[edit]- ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3) 030001. doi:10.1088/1674-1137/abddae.
- ^ "Standard Atomic Weights: Copper". CIAAW. 1969.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3) 030003. doi:10.1088/1674-1137/abddaf.
- ^ a b Canete, L.; Giraud, S.; Kankainen, A.; Bastin, B.; Nowacki, F.; Ascher, P.; Eronen, T.; Girard Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.; De Oliveira, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.; Vilen, M.; Äystö, J. (June 2024). "Long-sought isomer turns out to be the ground state of 76Cu". Physics Letters B. 853 138663. arXiv:2401.14018. doi:10.1016/j.physletb.2024.138663.
- ^ Giraud, S.; Canete, L.; Bastin, B.; Kankainen, A.; Fantina, A.F.; Gulminelli, F.; Ascher, P.; Eronen, T.; Girard-Alcindor, V.; Jokinen, A.; Khanam, A.; Moore, I.D.; Nesterenko, D.A.; de Oliveira Santos, F.; Penttilä, H.; Petrone, C.; Pohjalainen, I.; De Roubin, A.; Rubchenya, V.A.; Vilen, M.; Äystö, J. (October 2022). "Mass measurements towards doubly magic 78Ni: Hydrodynamics versus nuclear mass contribution in core-collapse supernovae". Physics Letters B. 833 137309. doi:10.1016/j.physletb.2022.137309.
- ^ Shimizu, Y.; Kubo, T.; Sumikama, T.; Fukuda, N.; Takeda, H.; Suzuki, H.; Ahn, D. S.; Inabe, N.; Kusaka, K.; Ohtake, M.; Yanagisawa, Y.; Yoshida, K.; Ichikawa, Y.; Isobe, T.; Otsu, H.; Sato, H.; Sonoda, T.; Murai, D.; Iwasa, N.; Imai, N.; Hirayama, Y.; Jeong, S. C.; Kimura, S.; Miyatake, H.; Mukai, M.; Kim, D. G.; Kim, E.; Yagi, A. (8 April 2024). "Production of new neutron-rich isotopes near the N = 60 isotones Ge 92 and As 93 by in-flight fission of a 345 MeV/nucleon U 238 beam". Physical Review C. 109 (4). doi:10.1103/PhysRevC.109.044313.
- ^ "(Cu) Copper NMR".
- ^ Harris, M. "Clarity uses a cutting-edge imaging technique to guide drug development". Nature Biotechnology September 2014: 34
Isotopes of copper
View on GrokipediaOverview and Natural Occurrence
Introduction to Copper Isotopes
Copper (Cu), with atomic number 29, has 30 known isotopes consisting of two stable nuclides, ^{63}Cu and ^{65}Cu, and 28 radioactive ones spanning mass numbers from ^{55}Cu to ^{84}Cu.[5][9] The stable isotopes dominate natural copper, while the radioactive variants range from neutron-deficient lighter isotopes with fewer neutrons relative to protons to neutron-rich heavier ones exhibiting greater neutron excess, reflecting the broad nuclear landscape around copper's valley of stability.[10] Notably, ^{84}Cu was discovered in 2024 through in-flight fission experiments at RIKEN.[9] The stable isotopes of copper were identified in the early 20th century through mass spectrometry techniques developed by Francis Aston, who confirmed their existence as part of his pioneering work on non-radioactive isotopes.[11] Systematic studies of the radioactive copper isotopes began in the post-1940s era, facilitated by the advent of nuclear reactors and particle accelerators that enabled their production and characterization.[12] These isotopes collectively cover an atomic mass range of approximately 55 to 84 u, providing insights into nuclear structure and reactions across the nuclide chart for element 29.[9]Stable Isotopes and Abundances
Copper has two stable isotopes: copper-63 (^{63}\ce{Cu}) and copper-65 (^{65}\ce{Cu}). The isotope ^{63}\ce{Cu} has an atomic mass of 62.92959772(56) u and a natural abundance of 69.15(15)%, while ^{65}\ce{Cu} has an atomic mass of 64.92778970(71) u and a natural abundance of 30.85(15)%.[4] Both isotopes possess a nuclear spin of 3/2, which contributes to their utility in nuclear magnetic resonance studies.[13] The standard atomic weight of copper, 63.546(3) u, is determined as the abundance-weighted average of these isotopes.[4] This value is calculated using the formula: where is the atomic mass, and are the fractional abundances of ^{63}\ce{Cu} and ^{65}\ce{Cu} (summing to 1), and and are their respective atomic masses.[4]| Isotope | Atomic Mass (u) | Natural Abundance (%) | Nuclear Spin |
|---|---|---|---|
| ^{63}\ce{Cu} | 62.92959772(56) | 69.15(15) | 3/2 |
| ^{65}\ce{Cu} | 64.92778970(71) | 30.85(15) | 3/2 |
Radioactive Isotopes
Key Radioisotopes and Half-Lives
Copper has 28 known radioactive isotopes, ranging from mass numbers 55 to 84, with half-lives spanning from microseconds to days. Among these, the most studied radioisotopes are those with relatively longer half-lives that enable practical applications in research and medicine. The longest-lived is ^{67}Cu, with a half-life of 61.83 hours, decaying primarily via β^- emission to stable ^{67}Zn.[16] This isotope's extended half-life makes it suitable for targeted therapies where prolonged circulation is beneficial, though detailed applications are discussed elsewhere.[5] Another key radioisotope is ^{64}Cu, with a half-life of 12.701 hours, notable for its dual β^+ (positron emission for PET imaging) and β^- decay modes.[17] This versatility allows ^{64}Cu to serve both diagnostic and therapeutic roles, such as in imaging tumor uptake.[18] On the proton-rich side, ^{60}Cu has a half-life of 23.7 minutes and undergoes primarily β^+ decay (93%) alongside electron capture (EC, 7%), making it useful for short-duration studies despite its brevity.[18] Neutron-rich isotopes include ^{68}Cu, with a short half-life of 31.1 seconds, decaying via β^- to ^{68}Zn.[19] High-precision measurements in 2024 identified an isomeric state in ^{76}Cu with a half-life of 672(110) ms, initially challenging assumptions about its ground-state nature, but a 2025 study suggests both isomeric and ground states have similar half-lives of 600–700 ms, leaving the nuclear structure debate unresolved.[20][21] The following table summarizes the half-lives of the five longest-lived radioactive copper isotopes (excluding those with half-lives under 10 seconds):| Isotope | Half-life | Primary Decay Mode |
|---|---|---|
| ^{67}Cu | 61.83 hours | β^- |
| ^{64}Cu | 12.701 hours | β^+, β^-, EC |
| ^{61}Cu | 3.333 hours | β^+, EC |
| ^{62}Cu | 9.74 minutes | β^+, EC |
| ^{60}Cu | 23.7 minutes | β^+, EC |
