Recent from talks
Nothing was collected or created yet.
Isotopes of silver
View on Wikipedia
This article needs additional citations for verification. (May 2018) |
| ||||||||||||||||||||||||||||||||||||||||||||||||
| Standard atomic weight Ar°(Ag) | ||||||||||||||||||||||||||||||||||||||||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Naturally occurring silver (47Ag) is composed of the two stable isotopes 107Ag and 109Ag in almost equal proportions, with 107Ag being slightly more abundant (51.839% natural abundance). Notably, silver is the only element with multiple NMR-active isotopes all having spin 1/2. Thus both 107Ag and 109Ag nuclei produce narrow lines in nuclear magnetic resonance spectra.[4]
40 radioisotopes have been characterized with the most stable being 105Ag with a half-life of 41.29 days, 111Ag with a half-life of 7.43 days, and 112Ag with a half-life of 3.13 hours.
All of the remaining radioactive isotopes have half-lives that are less than an hour, and the majority of these have half-lives that are less than 3 minutes. This element has numerous meta states, with the most stable being 108mAg (half-life 439 years), 110mAg (half-life 249.86 days) and 106mAg (half-life 8.28 days).
Known isotopes of silver range in atomic weight from 92Ag to 132Ag. The primary decay mode before the most abundant stable isotope, 107Ag, is electron capture and the primary mode after is beta decay. The primary decay products before 107Ag are palladium (element 46) isotopes and the primary products after are cadmium (element 48) isotopes.
The palladium isotope 107Pd decays by beta emission to 107Ag with a half-life of 6.5 million years. Iron meteorites are the only objects with a high enough palladium/silver ratio to yield measurable variations in 107Ag abundance. Radiogenic 107Ag was first discovered in the Santa Clara meteorite in 1978.
The discoverers[who?] suggest that the coalescence and differentiation of iron-cored small planets may have occurred 10 million years after a nucleosynthetic event. 107Pd versus 107Ag correlations observed in bodies, which have clearly been melted since the accretion of the Solar System, must reflect the presence of live short-lived nuclides in the early Solar System.
List of isotopes
[edit]
| Nuclide [n 1] |
Z | N | Isotopic mass (Da)[5] [n 2][n 3] |
Half-life[1] [n 4] |
Decay mode[1] [n 5] |
Daughter isotope [n 6][n 7] |
Spin and parity[1] [n 8][n 4] |
Natural abundance (mole fraction) | |||||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Excitation energy[n 4] | Normal proportion[1] | Range of variation | |||||||||||||||||
| 92Ag | 47 | 45 | 91.95971(43)# | 1# ms [>400 ns] |
β+? | 92Pd | |||||||||||||
| p? | 91Pd | ||||||||||||||||||
| 93Ag | 47 | 46 | 92.95019(43)# | 228(16) ns | β+? | 93Pd | 9/2+# | ||||||||||||
| p? | 92Pd | ||||||||||||||||||
| β+, p? | 92Rh | ||||||||||||||||||
| 94Ag | 47 | 47 | 93.94374(43)# | 27(2) ms | β+ (>99.8%) | 94Pd | 0+# | ||||||||||||
| β+, p (<0.2%) | 93Rh | ||||||||||||||||||
| 94m1Ag | 1350(400)# keV | 470(10) ms | β+ (83%) | 94Pd | (7+) | ||||||||||||||
| β+, p (17%) | 93Rh | ||||||||||||||||||
| 94m2Ag | 6500(550)# keV | 400(40) ms | β+ (~68.4%) | 94Pd | (21+) | ||||||||||||||
| β+, p (~27%) | 93Rh | ||||||||||||||||||
| p (4.1%) | 93Pd | ||||||||||||||||||
| 2p (0.5%) | 92Rh | ||||||||||||||||||
| 95Ag | 47 | 48 | 94.93569(43)# | 1.78(6) s | β+ (97.7%) | 95Pd | (9/2+) | ||||||||||||
| β+, p (2.3%) | 94Rh | ||||||||||||||||||
| 95m1Ag | 344.2(3) keV | <0.5 s | IT | 95Ag | (1/2−) | ||||||||||||||
| 95m2Ag | 2531.3(15) keV | <16 ms | IT | 95Ag | (23/2+) | ||||||||||||||
| 95m3Ag | 4860.0(15) keV | <40 ms | IT | 95Ag | (37/2+) | ||||||||||||||
| 96Ag | 47 | 49 | 95.93074(10) | 4.45(3) s | β+ (95.8%) | 96Pd | (8)+ | ||||||||||||
| β+, p (4.2%) | 95Rh | ||||||||||||||||||
| 96m1Ag[n 9] | 0(50)# keV | 6.9(5) s | β+ (85.1%) | 96Pd | (2+) | ||||||||||||||
| β+, p (14.9%) | 95Rh | ||||||||||||||||||
| 96m2Ag | 2461.4(3) keV | 103.2(45) μs | IT | 96Ag | (13−) | ||||||||||||||
| 96m3Ag | 2686.7(4) keV | 1.561(16) μs | IT | 96Ag | (15+) | ||||||||||||||
| 96m4Ag | 6951.8(14) keV | 132(17) ns | IT | 96Ag | (19+) | ||||||||||||||
| 97Ag | 47 | 50 | 96.923881(13) | 25.5(3) s | β+ | 97Pd | (9/2)+ | ||||||||||||
| 97mAg | 620(40) keV | 100# ms | IT? | 97Ag | 1/2−# | ||||||||||||||
| 98Ag | 47 | 51 | 97.92156(4) | 47.5(3) s | β+ | 98Pd | (6)+ | ||||||||||||
| β+, p (.0012%) | 97Rh | ||||||||||||||||||
| 98mAg | 107.28(10) keV | 161(7) ns | IT | 98Ag | (4+) | ||||||||||||||
| 99Ag | 47 | 52 | 98.917646(7) | 2.07(5) min | β+ | 99Pd | (9/2)+ | ||||||||||||
| 99mAg | 506.2(4) keV | 10.5(5) s | IT | 99Ag | (1/2−) | ||||||||||||||
| 100Ag | 47 | 53 | 99.916115(5) | 2.01(9) min | β+ | 100Pd | (5)+ | ||||||||||||
| 100mAg | 15.52(16) keV | 2.24(13) min | IT? | 100Ag | (2)+ | ||||||||||||||
| β+? | 100Pd | ||||||||||||||||||
| 101Ag | 47 | 54 | 100.912684(5) | 11.1(3) min | β+ | 101Pd | 9/2+ | ||||||||||||
| 101mAg | 274.1(3) keV | 3.10(10) s | IT | 101Ag | (1/2)− | ||||||||||||||
| 102Ag | 47 | 55 | 101.911705(9) | 12.9(3) min | β+ | 102Pd | 5+ | ||||||||||||
| 102mAg | 9.40(7) keV | 7.7(5) min | β+ (51%) | 102Pd | 2+ | ||||||||||||||
| IT (49%) | 102Ag | ||||||||||||||||||
| 103Ag | 47 | 56 | 102.908961(4) | 65.7(7) min | β+ | 103Pd | 7/2+ | ||||||||||||
| 103mAg | 134.45(4) keV | 5.7(3) s | IT | 103Ag | 1/2− | ||||||||||||||
| 104Ag | 47 | 57 | 103.908624(5) | 69.2(10) min | β+ | 104Pd | 5+ | ||||||||||||
| 104mAg | 6.90(22) keV | 33.5(20) min | β+ (>99.93%) | 104Pd | 2+ | ||||||||||||||
| IT (<0.07%) | 104Ag | ||||||||||||||||||
| 105Ag | 47 | 58 | 104.906526(5) | 41.29(7) d | β+ | 105Pd | 1/2− | ||||||||||||
| 105mAg | 25.468(16) keV | 7.23(16) min | IT (99.66%) | 105Ag | 7/2+ | ||||||||||||||
| β+ (.34%) | 105Pd | ||||||||||||||||||
| 106Ag | 47 | 59 | 105.906663(3) | 23.96(4) min | β+ | 106Pd | 1+ | ||||||||||||
| β−? | 106Cd | ||||||||||||||||||
| 106mAg | 89.66(7) keV | 8.28(2) d | β+ | 106Pd | 6+ | ||||||||||||||
| IT? | 106Ag | ||||||||||||||||||
| 107Ag[n 10] | 47 | 60 | 106.9050915(26) | Stable | 1/2− | 0.51839(8) | |||||||||||||
| 107mAg | 93.125(19) keV | 44.3(2) s | IT | 107Ag | 7/2+ | ||||||||||||||
| 108Ag[6] | 47 | 61 | 107.9059502(26) | 2.382(11) min | β− (97.15%) | 108Cd | 1+ | ||||||||||||
| EC (2.57%) | 108Pd | ||||||||||||||||||
| β+ (0.283%) | |||||||||||||||||||
| 108mAg[6] | 109.466(7) keV | 439(9) y | EC (91.3%) | 108Pd | 6+ | ||||||||||||||
| IT (8.7%) | 108Ag | ||||||||||||||||||
| 109Ag[n 11] | 47 | 62 | 108.9047558(14) | Stable | 1/2− | 0.48161(8) | |||||||||||||
| 109mAg[n 11] | 88.0337(10) keV | 39.79(21) s | IT | 109Ag | 7/2+ | ||||||||||||||
| 110Ag | 47 | 63 | 109.9061107(14) | 24.56(11) s | β− (99.70%) | 110Cd | 1+ | ||||||||||||
| EC (0.30%) | 110Pd | ||||||||||||||||||
| 110m1Ag | 1.112(16) keV | 660(40) ns | IT | 110Ag | 2− | ||||||||||||||
| 110m2Ag | 117.59(5) keV | 249.863(24) d | β− (98.67%) | 110Cd | 6+ | ||||||||||||||
| IT (1.33%) | 110Ag | ||||||||||||||||||
| 111Ag[n 11] | 47 | 64 | 110.9052968(16) | 7.433(10) d | β− | 111Cd | 1/2− | ||||||||||||
| 111mAg | 59.82(4) keV | 64.8(8) s | IT (99.3%) | 111Ag | 7/2+ | ||||||||||||||
| β− (0.7%) | 111Cd | ||||||||||||||||||
| 112Ag | 47 | 65 | 111.9070485(26) | 3.130(8) h | β− | 112Cd | 2(−) | ||||||||||||
| 113Ag | 47 | 66 | 112.906573(18) | 5.37(5) h | β− | 113mCd | 1/2− | ||||||||||||
| 113mAg | 43.50(10) keV | 68.7(16) s | IT (64%) | 113Ag | 7/2+ | ||||||||||||||
| β− (36%) | 113Cd | ||||||||||||||||||
| 114Ag | 47 | 67 | 113.908823(5) | 4.6(1) s | β− | 114Cd | 1+ | ||||||||||||
| 114mAg | 198.9(10) keV | 1.50(5) ms | IT | 114Ag | (6+) | ||||||||||||||
| 115Ag | 47 | 68 | 114.908767(20) | 20.0(5) min | β− | 115mCd | 1/2− | ||||||||||||
| 115mAg | 41.16(10) keV | 18.0(7) s | β− (79.0%) | 115Cd | 7/2+ | ||||||||||||||
| IT (21.0%) | 115Ag | ||||||||||||||||||
| 116Ag | 47 | 69 | 115.911387(4) | 3.83(8) min | β− | 116Cd | (0−) | ||||||||||||
| 116m1Ag | 47.90(10) keV | 20(1) s | β− (93%) | 116Cd | (3+) | ||||||||||||||
| IT (7%) | 116Ag | ||||||||||||||||||
| 116m2Ag | 129.80(22) keV | 9.3(3) s | β− (92%) | 116Cd | (6−) | ||||||||||||||
| IT (8%) | 116Ag | ||||||||||||||||||
| 117Ag | 47 | 70 | 116.911774(15) | 73.6(14) s | β− | 117mCd | 1/2−# | ||||||||||||
| 117mAg | 28.6(2) keV | 5.34(5) s | β− (94.0%) | 117mCd | 7/2+# | ||||||||||||||
| IT (6.0%) | 117Ag | ||||||||||||||||||
| 118Ag | 47 | 71 | 117.9145955(27) | 3.76(15) s | β− | 118Cd | (2−) | ||||||||||||
| 118m1Ag | 45.79(9) keV | ~0.1 μs | IT | 118Ag | (1,2)− | ||||||||||||||
| 118m2Ag | 127.63(10) keV | 2.0(2) s | β− (59%) | 118Cd | (5+) | ||||||||||||||
| IT (41%) | 118Ag | ||||||||||||||||||
| 118m3Ag | 279.37(20) keV | ~0.1 μs | IT | 118Ag | (3+) | ||||||||||||||
| 119Ag | 47 | 72 | 118.915570(16) | 2.1(1) s | β− | 119Cd | (7/2+) | ||||||||||||
| 119mAg | 33.5(3) keV[7] | 6.0(5) s | β− | 119Cd | (1/2−) | ||||||||||||||
| 120Ag | 47 | 73 | 119.918785(5) | 1.52(7) s | β− | 120Cd | 4(+) | ||||||||||||
| β−, n (<.003%) | 119Cd | ||||||||||||||||||
| 120m1Ag[n 9] | 0(50)# keV | 940(100) ms | β−? | 120Cd | (0−, 1−) | ||||||||||||||
| IT? | 120Ag | ||||||||||||||||||
| β−, n? | 119Cd | ||||||||||||||||||
| 120m2Ag | 203.2(2) keV | 384(22) ms | IT (68%) | 120Sn | 7(−) | ||||||||||||||
| β− (32%) | 120Cd | ||||||||||||||||||
| β−, n? | 119Cd | ||||||||||||||||||
| 121Ag | 47 | 74 | 120.920125(13) | 777(10) ms | β− (99.92%) | 121Cd | 7/2+# | ||||||||||||
| β−, n (0.080%) | 120Cd | ||||||||||||||||||
| 122Ag[8] | 47 | 75 | 121.9235420(56) | 550(50) ms | β− | 122Cd | (1−) | ||||||||||||
| β−, n? | 121Cd | ||||||||||||||||||
| 122m1Ag[8] | 303.7(50) keV | 200(50) ms | β− | 122Cd | (9−) | ||||||||||||||
| β−, n? | 121Cd | ||||||||||||||||||
| IT? | 122Ag | ||||||||||||||||||
| 122m2Ag | 171(50)# keV | 6.3(1) μs | IT | 122Ag | (1+) | ||||||||||||||
| 123Ag | 47 | 76 | 122.92532(4) | 294(5) ms | β− (99.44%) | 123Cd | (7/2+) | ||||||||||||
| β−, n (0.56%) | 122Cd | ||||||||||||||||||
| 123m1Ag | 59.5(5) keV | 100# ms | β− | 123Cd | (1/2−) | ||||||||||||||
| β−, n? | 122Cd | ||||||||||||||||||
| 123m2Ag | 1450(14)# keV | 202(20) ns | IT | 123Ag | |||||||||||||||
| 123m3Ag | 1472.8(8) keV | 393(16) ns | IT | 123Ag | (17/2−) | ||||||||||||||
| 124Ag | 47 | 77 | 123.9289318(74)[9] | 177.9(26) ms | β− (98.7%) | 124Cd | (2−) | ||||||||||||
| β−, n (1.3%) | 123Cd | ||||||||||||||||||
| 124m1Ag | 188.2(25) keV[9] | 144(20) ms | β− | 124Cd | (8−)[9] | ||||||||||||||
| β−, n? | 123Cd | ||||||||||||||||||
| 124m2Ag | 155.6(5) keV | 140(50) ns | IT | 124Ag | (1+) | ||||||||||||||
| 124m3Ag | 231.1(7) keV | 1.48(15) μs | IT | 124Ag | (1−) | ||||||||||||||
| 125Ag | 47 | 78 | 124.9310029(43)[9] | 160(5) ms | β− (88.2%) | 125Cd | (9/2+) | ||||||||||||
| β−, n (11.8%) | 124Cd | ||||||||||||||||||
| 125m1Ag | 97.1(5) keV | 50# ms | β−? | 125Cd | (1/2−) | ||||||||||||||
| IT? | 125Ag | ||||||||||||||||||
| β−, n? | 124Cd | ||||||||||||||||||
| 125m2Ag | 1501.2(6) keV | 491(20) ns | IT | 125Ag | (17/2−) | ||||||||||||||
| 126Ag | 47 | 79 | 125.93481(22)# | 52(10) ms | β− (86.3%) | 126Cd | 3+# | ||||||||||||
| β−, n (13.7%) | 125Cd | ||||||||||||||||||
| 126m1Ag | 100(100)# keV | 108.4(24) ms | β− | 126Cd | 9−# | ||||||||||||||
| IT? | 126Ag | ||||||||||||||||||
| β−, n? | 125Cd | ||||||||||||||||||
| 126m2Ag | 254.8(5) keV | 27(6) μs | IT | 126Ag | 1−# | ||||||||||||||
| 127Ag | 47 | 80 | 126.93704(22)# | 89(2) ms | β− (85.4%) | 127Cd | (9/2+) | ||||||||||||
| β−, n (14.6%) | 126Cd | ||||||||||||||||||
| 127mAg | 1938(17) keV | 67.5(9) ms | β− (91.2%) | 127Cd | (27/2+) | ||||||||||||||
| IT (8.8%) | 127Ag | ||||||||||||||||||
| 128Ag | 47 | 81 | 127.94127(32)# | 54(4) ms[10] | β− (80%) | 128Cd | (9−)[10] | ||||||||||||
| β−, n (20%) | 127Cd | ||||||||||||||||||
| β−, 2n? | 126Cd | ||||||||||||||||||
| 128mAg[10] | 2053.9+Z keV | 1.60(7) μs | IT | 128Ag | (16−) | ||||||||||||||
| 129Ag | 47 | 82 | 128.94432(43)# | 49.9(35) ms | β− (>80%) | 129Cd | 9/2+# | ||||||||||||
| β−, n (<20%) | 128Cd | ||||||||||||||||||
| 130Ag | 47 | 83 | 129.95073(46)# | 40.6(45) ms | β− | 130Cd | 1−# | ||||||||||||
| β−, n? | 129Cd | ||||||||||||||||||
| β−, 2n? | 128Cd | ||||||||||||||||||
| 131Ag | 47 | 84 | 130.95625(54)# | 35(8) ms | β− (90%) | 131Cd | 9/2+# | ||||||||||||
| β−, 2n (10%) | 129Cd | ||||||||||||||||||
| β−, n? | 130Cd | ||||||||||||||||||
| 132Ag | 47 | 85 | 131.96307(54)# | 30(14) ms | β− | 132Cd | 6−# | ||||||||||||
| β−, n? | 131Cd | ||||||||||||||||||
| β−, 2n? | 130Cd | ||||||||||||||||||
| This table header & footer: | |||||||||||||||||||
- ^ mAg – Excited nuclear isomer.
- ^ ( ) – Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
- ^ # – Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
- ^ a b c # – Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
- ^
Modes of decay:
EC: Electron capture
IT: Isomeric transition n: Neutron emission p: Proton emission - ^ Bold italics symbol as daughter – Daughter product is nearly stable.
- ^ Bold symbol as daughter – Daughter product is stable.
- ^ ( ) spin value – Indicates spin with weak assignment arguments.
- ^ a b Order of ground state and isomer is uncertain.
- ^ Used to date certain events in the early history of the Solar System
- ^ a b c Fission product
See also
[edit]Daughter products other than silver
References
[edit]- ^ a b c d e Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3) 030001. doi:10.1088/1674-1137/abddae.
- ^ "Standard Atomic Weights: Silver". CIAAW. 1985.
- ^ Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN 1365-3075.
- ^ "(Ag) Silver NMR".
- ^ Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3) 030003. doi:10.1088/1674-1137/abddaf.
- ^ a b Blachot, Jean (October 2000). "Nuclear Data Sheets for A = 108". Nuclear Data Sheets. 91 (2): 135–296. doi:10.1006/ndsh.2000.0017.
- ^ Kurpeta, J.; Abramuk, A.; Rząca-Urban, T.; Urban, W.; Canete, L.; Eronen, T.; Geldhof, S.; Gierlik, M.; Greene, J. P.; Jokinen, A.; Kankainen, A.; Moore, I. D.; Nesterenko, D. A.; Penttilä, H.; Pohjalainen, I.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Simpson, G. S.; Smith, A. G.; Vilén, M. (14 March 2022). "β - and γ -spectroscopy study of Pd 119 and Ag 119". Physical Review C. 105 (3). doi:10.1103/PhysRevC.105.034316.
- ^ a b Jaries, A.; Stryjczyk, M.; Kankainen, A.; Ayoubi, L. Al; Beliuskina, O.; Canete, L.; de Groote, R. P.; Delafosse, C.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Imgram, P.; Kahl, D.; Kostensalo, J.; Kujanpää, S.; Kumar, D.; Moore, I. D.; Mougeot, M.; Nesterenko, D. A.; Nikas, S.; Patel, D.; Penttilä, H.; Pitman-Weymouth, D.; Pohjalainen, I.; Raggio, A.; Ramalho, M.; Reponen, M.; Rinta-Antila, S.; de Roubin, A.; Ruotsalainen, J.; Srivastava, P. C.; Suhonen, J.; Vilen, M.; Virtanen, V.; Zadvornaya, A. "Physical Review C - Accepted Paper: Isomeric states of fission fragments explored via Penning trap mass spectrometry at IGISOL". journals.aps.org. arXiv:2403.04710.
- ^ a b c d Ruotsalainen, J.; Nesterenko, D. A.; Stryjczyk, M.; Kankainen, A.; Al Ayoubi, L.; Beliuskina, O.; Canete, L.; Chauveau, P.; de Groote, R. P.; Delahaye, P.; Eronen, T.; Flayol, M.; Ge, Z.; Geldhof, S.; Gins, W.; Hukkanen, M.; Jaries, A.; Kahl, D.; Kumar, D.; Moore, I. D.; Nikas, S.; Penttilä, H.; Pitman-Weymouth, D.; Raggio, A.; Rinta-Antila, S.; de Roubin, A.; Vilen, M.; Virtanen, V. A.; Winter, M. (16 April 2025). "High-precision mass measurements of the ground and isomeric states in Ag 124 , 125". Physical Review C. 111 (4). arXiv:2408.14181. doi:10.1103/PhysRevC.111.044314.
- ^ a b c Luo, D. W.; Zhang, J. Z.; Li, Z. H.; Cheng, Y. Y.; Hua, H.; Watanabe, H.; Lorusso, G.; Yuan, C. X.; Nishimura, S.; Baba, H.; Benzoni, G.; Browne, F.; Chae, K. Y.; Chen, Z. Q.; Crespi, F. C. L.; Doornenbal, P.; Fukuda, N.; Gernhäuser, R.; Gey, G.; Guo, C. Y.; Inabe, N.; Isobe, T.; Jiang, D. X.; Jin, Y.; Jung, H. S.; Jungclaus, A.; Kameda, D.; Kim, G. D.; Kim, Y. K.; Kojouharov, I.; Kondev, F. G.; Kubo, T.; Kurz, N.; Kwon, Y. K.; Lane, G. J.; Li, X. Q.; Lou, J. L.; Montaner-Pizá, A.; Moschner, K.; Naqvi, F.; Ni, L.; Niikura, M.; Nishibata, H.; Odahara, A.; Orlandi, R.; Patel, Z.; Podolyák, Zs.; Sakurai, H.; Schaffner, H.; Simpson, G. S.; Söderström, P.-A.; Steiger, K.; Sumikama, T.; Suzuki, H.; Takeda, H.; Taprogge, J.; Vajta, Zs.; Wendt, A.; Wu, H. Y.; Wu, J.; Xu, C.; Xu, Z. Y.; Yagi, A.; Ye, Y. L.; Yoshinaga, K.; Zhang, S. Q.; Zhang, S. Y.; Zhou, Z. X. (12 June 2025). "Seniority Structure in Neutron-Rich Nucleus Ag 128 : Evidence for Robustness of N = 82 Shell Closure in Silver Isotopes" (PDF). Physical Review Letters. 134 (23). doi:10.1103/wq9m-trj8.
- Isotope masses from:
- Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3) 030003. doi:10.1088/1674-1137/abddaf.
- Isotopic compositions and standard atomic masses from:
- Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3) 030001. doi:10.1088/1674-1137/abddae.
- de Laeter, John Robert; Böhlke, John Karl; De Bièvre, Paul; Hidaka, Hiroshi; Peiser, H. Steffen; Rosman, Kevin J. R.; Taylor, Philip D. P. (2003). "Atomic weights of the elements. Review 2000 (IUPAC Technical Report)". Pure and Applied Chemistry. 75 (6): 683–800. doi:10.1351/pac200375060683.
- Wieser, Michael E. (2006). "Atomic weights of the elements 2005 (IUPAC Technical Report)". Pure and Applied Chemistry. 78 (11): 2051–2066. doi:10.1351/pac200678112051.
- "News & Notices: Standard Atomic Weights Revised". International Union of Pure and Applied Chemistry. 19 October 2005.
- Half-life, spin, and isomer data selected from the following sources.
- Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3) 030001. doi:10.1088/1674-1137/abddae.
- National Nuclear Data Center. "NuDat 3.0 database". Brookhaven National Laboratory.
- Holden, Norman E. (2004). "11. Table of the Isotopes". In Lide, David R. (ed.). CRC Handbook of Chemistry and Physics (85th ed.). Boca Raton, Florida: CRC Press. ISBN 978-0-8493-0485-9.
Isotopes of silver
View on GrokipediaFundamentals of Silver Isotopes
Atomic and Nuclear Properties
Silver has an atomic number of 47, meaning its nuclei contain 47 protons, with the number of neutrons varying to produce different isotopes. 38 isotopes of silver are known, spanning mass numbers from 93 to 130.[8] Among these, only two isotopes, ^{107}Ag and ^{109}Ag, are stable, while the remaining are radioactive with half-lives ranging from fractions of a second to several years.[9] The stability of silver isotopes is closely tied to the neutron-to-proton (N/Z) ratio, which for the stable isotopes is approximately 1.28 in ^{107}Ag (60 neutrons) and 1.32 in ^{109}Ag (62 neutrons). Isotopes with mass numbers near 107–109 exhibit the greatest stability due to favorable N/Z ratios that minimize the nucleus's energy relative to potential decay products. Deviations from this range lead to instability, with proton-rich isotopes (lower A) tending toward electron capture or beta-plus decay, and neutron-rich ones (higher A) favoring beta-minus decay.[10] Nuclear binding energies for silver isotopes reflect the semi-empirical mass formula trends in this mass region, where the binding energy per nucleon is roughly 8.5 MeV, contributing to overall stability around A ≈ 107–109. The total binding energy BE of a silver nucleus is conceptually given by where Z = 47 is the atomic number, A is the mass number, m_p and m_n are the masses of the proton and neutron, M is the mass of the nucleus, and c is the speed of light. This expression highlights how the mass defect determines the energy required to disassemble the nucleus into its constituent nucleons. Binding energy per nucleon decreases slightly for isotopes farther from the stable line, influencing their decay pathways.[10]Isotopic Notation and Identification
Silver isotopes are denoted using the standard nuclide notation, where the mass number (total number of protons and neutrons) is placed as a left superscript before the chemical symbol Ag, with the atomic number optionally included as a left subscript (e.g., or simply for silver-107). This notation uniquely identifies each isotope by its mass number, distinguishing it from the 38 known isotopes of silver, which range from to . Both stable isotopes, and , possess a nuclear spin quantum number , a property that facilitates their characterization in spectroscopic techniques.[1][9] Identification of silver isotopes relies on high-precision analytical methods tailored to their nuclear and atomic properties. Mass spectrometry, particularly multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) and thermal ionization mass spectrometry (TIMS), is the primary technique for determining isotopic abundances and ratios, enabling detection of trace-level variations in samples from geological or environmental sources. These methods resolve isotopes based on their mass-to-charge ratios, providing quantitative data essential for applications in geochemistry and nuclear forensics.[11][12] Nuclear magnetic resonance (NMR) spectroscopy serves as a complementary tool for structural and environmental analysis of silver isotopes, exploiting their NMR-active nuclei. Both (with gyromagnetic ratio MHz/T) and ( MHz/T) yield sharp, narrow lines due to the absence of a quadrupole moment from their spin-1/2 configuration, allowing chemical shift measurements over a range of approximately 1500 ppm. This makes silver unique among elements with multiple isotopes, as it is the only one featuring two spin-1/2 NMR-active isotopes in natural abundance.[13][14] In mass spectrometric analyses, silver isotopes require distinction from isobars—nuclides of the same mass number but different atomic numbers, such as those from palladium () and cadmium (). For instance, may overlap with or , while shares mass with and ; such interferences are mitigated through prior chemical separation via ion chromatography or by employing high-resolution mass spectrometry to resolve the subtle mass differences. These distinctions are critical in multi-element analyses, such as those of meteoritic materials, where Pd, Ag, and Cd abundances are determined simultaneously via isotope dilution techniques.[15][16]Natural Occurrence and Abundance
Primordial Isotopes
The primordial isotopes of silver are the stable nuclides and , which originated from stellar nucleosynthesis processes, primarily the p-process in core-collapse supernovae, prior to the formation of the Solar System approximately 4.6 billion years ago. These isotopes were present in the interstellar medium and incorporated into the molecular cloud that collapsed to form the Sun and planets, persisting unchanged due to their stability against radioactive decay. Unlike short-lived radionuclides, and represent the baseline isotopic reservoir of silver in primordial Solar System materials. In the early Solar System, acquired an additional radiogenic component from the beta decay of the extinct radionuclide , which had a half-life of 6.5 million years and was produced in late nucleosynthetic events such as supernova explosions. Evidence for live comes from iron meteorites, where excesses of (up to several percent relative to ) correlate positively with palladium concentrations, indicating decay occurred within the first few million years after Solar System formation. No traces of remain in modern samples, as its half-life is negligible compared to the Solar System's age, leaving only the stable daughter isotope to record this early chronometric signal. On Earth, the primordial silver isotopes exhibit uniform distribution in terrestrial ores, with the ratio showing no significant variations attributable to genetic environment, mineralization age, or host rock lithology in hypogene deposits. This lack of mass-dependent fractionation preserves the initial Solar System signature through geological processes, including accretion and differentiation. The overall natural isotopic abundances are approximately 51.84% for and 48.16% for .Isotopic Composition in Nature
In nature, silver consists primarily of two stable isotopes: silver-107 (¹⁰⁷Ag) and silver-109 (¹⁰⁹Ag), with standard atomic abundances of 51.839(3)% for ¹⁰⁷Ag and 48.161(3)% for ¹⁰⁹Ag, as determined by the Commission on Isotopic Abundances and Atomic Weights (CIAW) of the International Union of Pure and Applied Chemistry (IUPAC). These values are based on measurements of well-characterized terrestrial samples and serve as the accepted baseline for the element's isotopic composition.[17] Natural variations in silver's isotopic ratios are generally small and arise from mass-dependent fractionation processes. In primary (hypogene) ore deposits, such as those involving native silver or acanthite, isotopic deviations from the standard ratios are negligible, typically ranging from -0.4‰ to +0.4‰ in δ¹⁰⁹Ag notation, with no significant differences attributable to deposit type, age, or host rock.[18] Minor fractionation can occur in biological systems or industrial processes, such as the formation and dissolution of silver nanoparticles, leading to shifts in the ¹⁰⁹Ag/¹⁰⁷Ag ratio on the order of 1‰ or less under environmental conditions.[19] There are no notable cosmogenic contributions to silver's natural isotopic inventory, as production of Ag isotopes via cosmic ray interactions is insignificant compared to primordial abundances. Precise measurement of silver's natural isotopic composition relies on standardized reference materials and analytical techniques that account for instrumental mass bias. The NIST Standard Reference Material (SRM) 978a, a silver nitrate sample, defines the zero-point for δ¹⁰⁹Ag values, enabling high-precision multicollector inductively coupled plasma mass spectrometry (MC-ICPMS) analyses with uncertainties below 0.1‰.[20] These methods correct for mass-dependent fractionation during ionization and detection, ensuring accurate reporting of subtle natural variations relative to the international standard.[21]Stable Isotopes
Silver-107
Silver-107 (¹⁰⁷Ag) is one of the two stable isotopes of silver, with an atomic mass of 106.90509(2) u.[22] It has a nuclear spin of 1/2 and a magnetic dipole moment of -0.11352(5) μ_N, making it suitable for nuclear magnetic resonance (NMR) studies due to its spin-1/2 configuration that produces narrow spectral lines.[22] In natural silver, ¹⁰⁷Ag has an abundance of 51.839(8)%.[22] The lower atomic mass of ¹⁰⁷Ag compared to the heavier stable isotope contributes to a slightly reduced average atomic mass and thus a marginally lower density for bulk natural silver relative to a sample enriched in heavier isotopes. Additionally, ¹⁰⁷Ag exhibits a thermal neutron capture cross-section of approximately 38 barns, influencing its behavior in neutron absorption processes.[23] A significant aspect of ¹⁰⁷Ag is its origin as the daughter product of the now-extinct radionuclide palladium-107 (¹⁰⁷Pd), which had a half-life of 6.5 million years and decayed primarily by electron capture to ¹⁰⁷Ag.[24] This relationship forms the basis of the ¹⁰⁷Pd–¹⁰⁷Ag chronometer, widely used in cosmochemistry to date early solar system events and metal-silicate fractionation in meteorites.[25]Silver-109
Silver-109 (¹⁰⁹Ag) is the more massive of silver's two stable isotopes, comprising approximately 48.16% of naturally occurring silver. It possesses an atomic mass of 108.904755 u and a nuclear spin of I = ½⁻, properties that render it magnetically receptive for nuclear magnetic resonance (NMR) spectroscopy.[26] The gyromagnetic ratio of ¹⁰⁹Ag is -1.250 × 10⁷ rad T⁻¹ s⁻¹, which, combined with its spin-½ nature and lack of quadrupole moment, enables the observation of narrow spectral lines in NMR studies of silver-containing compounds, often preferred over ¹⁰⁷Ag due to its slightly higher sensitivity.[27] Unlike ¹⁰⁷Ag, which exhibits isotopic anomalies attributable to the decay of the now-extinct short-lived radionuclide ¹⁰⁷Pd (half-life 6.5 million years) in the early solar system, ¹⁰⁹Ag shows no such excesses and is considered purely primordial, originating directly from nucleosynthetic processes without contributions from radioactive parent decay.[28] This distinction makes ¹⁰⁹Ag a key reference isotope in cosmochemical investigations of silver fractionation in meteorites and planetary materials. In terms of nuclear interactions, ¹⁰⁹Ag exhibits a notably higher thermal neutron capture cross-section of approximately 90 barns for the ¹⁰⁹Ag(n,γ)¹¹⁰Ag reaction, compared to about 38 barns for ¹⁰⁷Ag.[29][23] This elevated value, derived from evaluated nuclear data libraries, influences neutron absorption and reactivity in environments involving silver, such as nuclear reactors where trace silver impurities can impact neutron economy and fuel burnup calculations. The cross-section's magnitude underscores ¹⁰⁹Ag's role in neutronics modeling, contributing to more accurate simulations of reactor behavior under thermal neutron fluxes.Radioactive Isotopes
Long-Lived Isotopes
Long-lived isotopes of silver refer to the radioactive nuclides of this element with half-lives greater than one day, distinguishing them from short-lived variants and enabling potential uses in research and applications where extended decay times are beneficial. These isotopes are produced artificially and exhibit decay behaviors influenced by their position relative to the stable isotopes ¹⁰⁷Ag and ¹⁰⁹Ag. Proton-rich isotopes (those with mass numbers below 107) typically undergo electron capture (EC) or positron emission (β⁺) to form palladium daughters, while neutron-rich isotopes (mass numbers above 109) decay primarily via beta-minus (β⁻) emission to cadmium daughters. This dichotomy arises from the nuclear imbalance in proton-to-neutron ratios, with EC/β⁺ reducing proton number and β⁻ increasing it.[30] Among the key examples, ¹⁰⁵Ag possesses a half-life of 41.29 ± 0.07 days and decays exclusively by EC/β⁺ to ¹⁰⁵Pd, with a total decay energy (Q-value) of 1.347 ± 0.005 MeV; this makes it one of the longest-lived neutron-deficient silver isotopes. Similarly, ¹¹¹Ag has a half-life of 7.45 ± 0.01 days and decays 100% by β⁻ emission to ¹¹¹Cd, releasing 1.0368 ± 0.0014 MeV. A particularly remarkable case is the isomeric state ¹⁰⁸mAg, with a half-life of 448 ± 27 years, which decays predominantly by EC/β⁺ (91.3 ± 0.9%) to ¹⁰⁸Pd and by isomeric transition (IT, 8.7 ± 0.9%) to the ground state ¹⁰⁸Ag; its extended longevity stems from the hindered nature of the high-spin excited state.[31] Another significant isomer, ¹¹⁰mAg, exhibits a half-life of 249.83 ± 0.04 days, decaying via β⁻ (primarily to ¹¹⁰Cd) and IT to ¹¹⁰Ag. These properties highlight the diversity in decay pathways for long-lived silver radioisotopes, often involving gamma emission alongside particle decay for de-excitation.[30][32] The following table summarizes selected long-lived silver isotopes, focusing on their half-lives, primary decay modes, daughter products, and Q-values where established:| Isotope | Half-life | Decay Mode(s) | Daughter(s) | Q-value (MeV) |
|---|---|---|---|---|
| ¹⁰⁵Ag | 41.29 d | EC/β⁺ (100%) | ¹⁰⁵Pd | 1.347 |
| ¹⁰⁶mAg | 8.28 d | EC/β⁺ (100%) | ¹⁰⁶Pd | 3.984 |
| ¹⁰⁸mAg | 448 y | EC/β⁺ (91%), IT (9%) | ¹⁰⁸Pd, ¹⁰⁸Ag | 1.353 |
| ¹¹⁰mAg | 249.8 d | β⁻ (~90%), IT (~10%) | ¹¹⁰Cd, ¹¹⁰Ag | 2.647 |
| ¹¹¹Ag | 7.45 d | β⁻ (100%) | ¹¹¹Cd | 1.037 |
Short-Lived Isotopes
Short-lived isotopes of silver refer to the radioactive nuclides of this element with half-lives shorter than 24 hours, which are valuable for investigating rapid nuclear decay processes, short-lived excited states, and transient phenomena in nuclear reactions due to their quick disappearance. These isotopes occur across a broad mass range, from proton-rich lighter variants decaying mainly through electron capture (EC) or positron emission (β⁺) to neutron-rich heavier ones favoring β⁻ decay, often accompanied by gamma emission for spectroscopic studies. Many exhibit half-lives below 3 minutes, allowing researchers to probe nuclear structure and beta-delayed processes in real-time experiments.[30] On the proton-rich side, isotopes from ^{93}Ag to ^{104}Ag are exclusively short-lived, with decay characteristics suited to studies of proton emission and weak interaction physics in neutron-deficient nuclei. For example, ^{94}Ag decays with a half-life of 26 milliseconds primarily via EC/β⁺ (100%), while ^{104}Ag has a half-life of 69.2 minutes, decaying via EC/β⁺ (100%) and emitting key positrons and gamma rays useful for positron emission tomography (PET) imaging research.[30][5] Neutron-rich short-lived silver isotopes, spanning ^{110}Ag to ^{132}Ag (excluding longer-lived ground states like ^{111}Ag), predominantly undergo β⁻ decay, enabling investigations into beta-delayed neutron emission and shell effects in the cadmium region. Representative examples include ^{110}Ag, with a 24.6-second half-life decaying mainly by β⁻ (99.7%) to stable ^{110}Cd, and ^{112}Ag, which has a 3.13-hour half-life and decays 100% via β⁻ to ^{112}Cd, providing insights into high-spin states through its gamma transitions. Similarly, ^{113}Ag decays by β⁻ (100%) with a half-life of 5.37 hours. Beyond these, isotopes from ^{114}Ag to ^{132}Ag feature progressively shorter half-lives, from 4.6 seconds for ^{114}Ag (β⁻, 100%) down to 28 milliseconds for ^{132}Ag (β⁻, 100%), often with minor β⁻-delayed neutron branches that inform astrophysical r-process models.[30] Certain isomers, such as ^{110m2}Ag with a half-life of 249.86 days, contrast with short-lived ground states but contribute to understanding isomeric transitions in silver; however, the focus remains on the fleeting ground and low-lying states for dynamic decay studies.[30] The following table summarizes half-lives, principal decay modes, and key branching ratios for selected short-lived silver isotopes in the specified mass ranges (ground states unless noted; data exclude stable and long-lived nuclides >24 hours).[30] Proton-rich (^{93}Ag to ^{104}Ag):| Isotope | Half-life | Principal decay mode | Branching ratios |
|---|---|---|---|
| ^{93}Ag | 228 ns | EC/β⁺ | 100% |
| ^{94}Ag | 26 ms | EC/β⁺ | 100% |
| ^{95}Ag | 1.75 s | EC/β⁺ | 100% |
| ^{96}Ag | 4.40 s | EC/β⁺ | 91.5% (EC/β⁺), 8.5% (EC,p) |
| ^{97}Ag | 25.5 s | EC | 100% |
| ^{98}Ag | 47.5 s | EC/β⁺ | ~100% (minor EC,p ~0.001%) |
| ^{99}Ag | 2.07 min | EC | 100% |
| ^{100}Ag | 2.01 min | EC | 100% |
| ^{101}Ag | 11.1 min | EC | 100% |
| ^{102}Ag | 12.9 min | EC | 100% |
| ^{103}Ag | 65.7 min | EC/β⁺ | 100% |
| ^{104}Ag | 69.2 min | EC/β⁺ | 100% |
| Isotope | Half-life | Principal decay mode | Branching ratios |
|---|---|---|---|
| ^{110}Ag | 24.6 s | β⁻ | 99.7% (β⁻), 0.3% (EC) |
| ^{112}Ag | 3.13 h | β⁻ | 100% |
| ^{113}Ag | 5.37 h | β⁻ | 100% |
| ^{114}Ag | 4.6 s | β⁻ | 100% |
| ^{115}Ag^m | 18.0 s | β⁻ | 79% (β⁻), 21% (IT) |
| ^{116}Ag | 230 s | β⁻ | 100% |
| ^{118}Ag | 3.76 s | β⁻ | 100% |
| ^{120}Ag | 1.23 s | β⁻ | >99.997% (β⁻), <0.003% (β⁻,n) |
| ^{122}Ag | 0.53 s | β⁻ | 99.8% (β⁻), 0.2% (β⁻,n) |
| ^{125}Ag | 0.16 s | β⁻ | Predominantly β⁻, minor β⁻,n |
| ^{130}Ag | 42 ms | β⁻ | Predominantly β⁻, minor β⁻,n/2n |
| ^{132}Ag | 28 ms | β⁻ | 100% (β⁻), minor multi-neutron branches |
