Hubbry Logo
RiskRiskMain
Open search
Risk
Community hub
Risk
logo
8 pages, 0 posts
0 subscribers
Be the first to start a discussion here.
Be the first to start a discussion here.
Risk
Risk
from Wikipedia
Firefighters are exposed to risks of fire and building collapse during their work.

Risk is the possibility of something bad happening,[1] comprising a level of uncertainty about the effects and implications of an activity, particularly negative and undesirable consequences.[2][3]

Harbor sign warning visitors that use of the walkway is "at your own risk"

Risk theory, assessment, and management are applied but substantially differ in different practice areas, such as business, economics, environment, finance, information technology, health, insurance, safety, security, and privacy. The international standard for risk management, ISO 31000, provides general guidelines and principles on managing risks faced by organizations.[4]

Artist's impression of a major asteroid impact, an example of a global catastrophic risk.

Definition

[edit]

The Oxford English Dictionary (OED) cites the earliest use of the word in English (in the spelling of risque from its French original, 'risque') as of 1621, and the spelling as risk from 1655. While including several other definitions, the OED 3rd edition defines risk as "(Exposure to) the possibility of loss, injury, or other adverse or unwelcome circumstance; a chance or situation involving such a possibility".[5] The Cambridge Advanced Learner's Dictionary defines risk as "the possibility of something bad happening".[1] Some have argued that the definition of risk is subjective and context-specific.[2][6] The International Organization for Standardization (ISO) 31073 defines risk as:[7][8]

effect of uncertainty[9] on objectives[10]

Note 1: An effect is a deviation from the expected. It can be positive, negative or both, and can address, create or result in opportunities and threats.[11]

Note 2: Objectives can have different aspects and categories, and can be applied at different levels.

Note 3: Risk is usually expressed in terms of risk sources, potential events, their consequences and their likelihood.

Other general definitions include:

  • "Source of harm". The earliest use of the word "risk" was as a synonym for the much older word "hazard", meaning a potential source of harm. This definition comes from Blount's "Glossographia" (1661)[12] and was the main definition in the OED 1st (1914) and 2nd (1989) editions. Modern equivalents refer to "unwanted events"[13] or "something bad that might happen".[1]
  • "Chance of harm". This definition comes from Johnson's "Dictionary of the English Language" (1755), and has been widely paraphrased, including "possibility of loss"[5] or "probability of unwanted events".[13]
  • "Uncertain events affecting objectives". This definition was adopted by the Association for Project Management (1997).[14][15] With slight rewording it became the definition in ISO Guide 73.[3]
  • "Uncertainty of outcome". This definition was adopted by the UK Cabinet Office (2002)[16] to encourage innovation to improve public services. It allowed "risk" to describe either "positive opportunity or negative threat of actions and events".
  • "Potential returns from an event ['a thing that happens or takes place'], where the returns are any changes, effects, consequences, and so on, of the event". This definition from Newsome (2014) expands the neutrality of 'risk' akin to the UK Cabinet Office (2002) and Knight (1921).[17]
  • "Human interaction with uncertainty". This definition comes from Cline (2015) in the context of adventure education.[18]

Versus uncertainty

[edit]

In his seminal 1921 work Risk, Uncertainty, and Profit, Frank Knight established the distinction between risk and uncertainty.

... Uncertainty must be taken in a sense radically distinct from the familiar notion of Risk, from which it has never been properly separated. The term "risk," as loosely used in everyday speech and in economic discussion, really covers two things which, functionally at least, in their causal relations to the phenomena of economic organization, are categorically different. ... The essential fact is that "risk" means in some cases a quantity susceptible of measurement, while at other times it is something distinctly not of this character; and there are far-reaching and crucial differences in the bearings of the phenomenon depending on which of the two is really present and operating. ... It will appear that a measurable uncertainty, or "risk" proper, as we shall use the term, is so far different from an unmeasurable one that it is not in effect an uncertainty at all. We ... accordingly restrict the term "uncertainty" to cases of the non-quantitive type.[19]

Thus, Knightian uncertainty is immeasurable, not possible to calculate, while in the Knightian sense risk is measurable.

By field

[edit]
Definitions of risk
Field Definition Sources Related concepts
Economics Uncertainty about loss Willett's "Economic Theory of Risk and Insurance" (1901).[20]
Insurance Measurable uncertainty Knight's "Risk, Uncertainty and Profit" (1921).[21][22][23] Knightian uncertainty, mortality risk, longevity risk, interest rate risk
Possibility of an event occurring which causes injury or loss Lloyd's.[24]
Finance Volatility of return Markovitz's "Portfolio Selection" (1952).[25][26] Financial risk management, Risk aversion
Components: Downside risk, Upside risk, Inherent risk, Benefit risk
Business risks: Enterprise risk management, Audit risk, Process risk, Legal risk, Reputational risk, Peren–Clement index
Investments: Modern portfolio theory, Value at risk, Hedge
Types of financial risks: Market risk, Credit risk, Liquidity risk, Operational risk
Decision theory Statistically expected loss Wald (1939).[27] Used in planning of Delta Works in 1953.[28] Adopted by the US Nuclear Regulatory Commission in 1975.[29] Remains widely used.[13]
Bayesian analysis[30] Scenarios, probabilities and consequences: Consequences and associated uncertainty; likelihood and severity of events Kaplan & Garrick (1981).[31] Found in ISO Guide 73 Note 4.[3]
Occupational health and safety Combination of the likelihood and consequence(s) of a specified hazardous event occurring Occupational Health and Safety Assessment Series (OHSAS) standard OHSAS 18001, 1999. Occupational hazard, High reliability organisation, Probabilistic risk assessment, WASH-1400[32]
Cybersecurity Asset, threat and vulnerability Threat Analysis Group (2010).[33] Information security, IT risk management, IT risk
Environment Chance of harmful effects to human health or to ecological systems United States Environmental Protection Agency.[34] Environmental hazards, Environmental issues,[35] Environmental protection
Health Possibility that something will cause harm Centres for Disease Control and Prevention.[36] Epidemiology, Risk factors, Health risk assessment, Relative risk, Mortality rate, Loss of life expectancy
Project management An uncertain event or condition that, if it occurs, has a positive or negative effect on a project's objectives Project Management Institute.[37][38] Project risk management
Security Any event that could result in the compromise of organizational assets i.e. the unauthorized use, loss, damage, disclosure or modification of organizational assets for the profit, personal interest or political interests of individuals, groups or other entities [39] Security management

Mathematical

[edit]

Triplets

[edit]

Risk is often considered to be a set of triplets[31][26]

for i = 1,2,....,N

where:

is a scenario describing a possible event
is the probability of the scenario
is the consequence of the scenario
is the number of scenarios chosen to describe the risk

Risks expressed in this way can be shown in a risk register or a risk matrix. They may be quantitative or qualitative, and can include positive as well as negative consequences.[40]

An updated version recommends the following general description of risk:[30]

where:

is an event that might occur
is the consequences of the event
is an assessment of uncertainties
is a knowledge-based probability of the event
is the background knowledge that U and P are based on

Probability distributions

[edit]

If all the consequences are expressed in the same units (or can be converted into a consistent loss function), the risk can be expressed as a probability density function describing the uncertainty about outcome:

This can also be expressed as a cumulative distribution function (CDF) (or S curve).[40] One way of highlighting the tail of this distribution is by showing the probability of exceeding given losses, known as a complementary cumulative distribution function, plotted on logarithmic scales. For example, frequency-number diagrams show the annual frequency of exceeding given numbers of fatalities.[40] Another way of summarizing the size of the distribution's tail is the loss with a certain probability of exceedance, that is, the value at risk.

Expected values

[edit]

Risk is often measured as the expected value of the loss. This combines the probabilities and consequences into a single value. See also expected utility. The simplest case is a binary possibility of Accident or No accident. The associated formula for calculating risk is then:

In a situation with several possible accident scenarios, total risk is the sum of the risks for each scenario, provided that the outcomes are comparable:

In statistical decision theory, the risk function is defined as the expected value of a given loss function as a function of the decision rule used to make decisions in the face of uncertainty.

A disadvantage of defining risk as the product of impact and probability is that it presumes, unrealistically, that decision-makers are risk-neutral. A risk-neutral person's utility is proportional to the expected value of the payoff. For example, a risk-neutral person would consider 20% chance of winning $1 million exactly as desirable as getting a certain $200,000. However, most decision-makers are not actually risk-neutral and would not consider these equivalent choices.[26] Pascal's mugging is a philosophical thought experiment that demonstrates issues in assessing risk solely by the expected value of loss or return.

Outcome frequencies

[edit]

Risks of discrete events such as accidents are often measured as outcome frequencies, or expected rates of specific loss events per unit time. When small, frequencies are numerically similar to probabilities, but have dimensions of 1/t and can sum to more than 1. Typical outcomes expressed this way include:[41]

  • Individual risk - the frequency of a given level of harm to an individual.[42] It often refers to the expected annual probability of death, and is then comparable to the mortality rate.
  • Group (or societal risk) – the relationship between the frequency and the number of people suffering harm.[42]
  • Frequencies of property damage or total loss.
  • Frequencies of environmental damage such as oil spills.

Financial risk

[edit]

In finance, volatility is the degree of variation of a trading price over time, usually measured by the standard deviation of logarithmic returns. Modern portfolio theory measures risk using the variance (or standard deviation) of asset prices. The risk is then:

The beta coefficient measures the volatility of an individual asset to overall market changes. This is the asset's contribution to systematic risk, which cannot be eliminated by portfolio diversification. It is the covariance between the asset's return ri and the market return rm, expressed as a fraction of the market variance:[43]

Risk-neutral measure

[edit]

In mathematical finance, a risk-neutral measure is a probability measure such that each share price is exactly equal to the discounted expectation of the share price under the measure. This is heavily used in the pricing of financial derivatives due to the fundamental theorem of asset pricing.

Let be a d-dimensional market representing the price processes of the risky assets, the risk-free bond and the underlying probability space. Then a measure is a risk-neutral measure if

  1. , i.e., is equivalent to ,
  2. the processes are (local) martingales w.r.t. .[44]

Mandelbrot's mild and wild theory

[edit]

Benoit Mandelbrot distinguished between "mild" and "wild" risk and argued that risk assessment and analysis must be fundamentally different for the two types of risk.[45] Mild risk follows normal or near-normal probability distributions, is subject to regression to the mean and the law of large numbers, and is therefore relatively predictable. Wild risk follows fat-tailed distributions, e.g., Pareto or power-law distributions, is subject to regression to the tail (infinite mean or variance, rendering the law of large numbers invalid or ineffective), and is therefore difficult or impossible to predict. A common error in risk assessment and analysis is to underestimate the wildness of risk, assuming risk to be mild when in fact it is wild, which must be avoided if risk assessment and analysis are to be valid and reliable, according to Mandelbrot.

Estimation

[edit]

Management

[edit]

Risk management is the set of actions that organisations take to avoid and mitigate downside risks,[46][3] taking into account factors such as the possibility of upside risk opportunities,[47] innovation,[48] the environment, safety,[49] scientific evidence, culture, politics, and law.[46] Risk management operates at the strategic, operational, and individual level,[4] and may form part of an overarching governance, risk, and compliance strategy. It comprises the assessment of risk as regards an organisation's objectives and strategies, as well as risk mitigation options, such as risk transformation, risk transfer, risk avoidance, risk reduction, and risk retention.[50]

Assessment

[edit]

Risk assessment is a systematic approach to recognising and characterising risks, and evaluating their significance, in order to support decisions about how to manage them. ISO 31000 defines it in terms of its components as "the overall process of risk identification, risk analysis and risk evaluation":[4]

  • Risk identification is "the process of finding, recognizing and recording risks". It "involves the identification of risk sources, events, their causes and their potential consequences."[3] ISO 31000 describes it as the first step in a risk assessment process, preceding risk analysis and risk evaluation.[4] In safety contexts, where risk sources are known as hazards, this step is known as "hazard identification".[51]
  • The ISO defines risk analysis as "the process to comprehend the nature of risk and to determine the level of risk".[3] In the ISO 31000 risk assessment process, risk analysis follows risk identification and precedes risk evaluation.[40] Risk analysis often uses data on the probabilities and consequences of previous events.
  • Risk evaluation involves comparing estimated levels of risk against risk criteria to determine the significance of the risk and make decisions about risk treatment actions.[40] In most activities, risks can be reduced by adding further controls or other treatment options, but typically this increases cost or inconvenience. It is rarely possible to eliminate risks altogether without discontinuing the activity. Sometimes it is desirable to increase risks to secure valued benefits. Risk criteria are intended to guide decisions on these issues.[52]

For example, the tolerability of risk framework, developed by the UK Health and Safety Executive, divides risks into three bands:[53]

  • Unacceptable risks – only permitted in exceptional circumstances.
  • Tolerable risks – to be kept as low as reasonably practicable (ALARP), taking into account the costs and benefits of further risk reduction.
  • Broadly acceptable risks – not normally requiring further reduction.

Attitude, appetite and tolerance

[edit]

The terms risk appetite, attitude, and tolerance are often used similarly to describe an organisation's or individual's attitude towards risk-taking. One's attitude may be described as risk-averse, risk-neutral, or risk-seeking.[54]

Mitigation

[edit]
  • Risk transformation describes the process of not only mitigating risks but also employing risk factors into advantages.[55]
  • Risk transfer is the shifting of risks from one party to another, typically an insurer.[56]

Psychology of risk

[edit]

Risk perception

[edit]

Risk perception is the subjective judgement that people make about the characteristics and severity of a risk. At its most basic, the perception of risk is an intuitive form of risk analysis.[57]

Adults have an intuitive understanding of risk, which may not be exclusive to humans.[58] Many ancient societies believed in divinely determined fates, and attempts to influence the gods can be seen as early forms of risk management. Early uses of the word 'risk' coincided with an erosion of belief in divinely ordained fate.[59] Notwithstanding, intuitive perceptions of risk are often inaccurate owing to reliance on psychological heuristics, which are subject to systematic cognitive biases.[60] In particular, the accuracy of risk perception can be adversely affected by the affect heuristic, which relies on emotion to make decisions.[61][62]

The availability heuristic is the process of judging the probability of an event by the ease with which instances come to mind. In general, rare but dramatic causes of death are over-estimated while common unspectacular causes are under-estimated;[63] an "availability cascade" is a self-reinforcing cycle in which public concern about relatively minor events is amplified by media coverage until the issue becomes politically important.[64] Despite the difficulty of thinking statistically, people are typically subject to the overconfidence effect in their judgements, tending to overestimate their understanding of the world and underestimate the role of chance,[65] with even experts subject to this effect.[66] Other biases that affect the perception of risk include ambiguity aversion.

Paul Slovic's "psychometric paradigm" assumes that risk is subjectively defined by individuals, influenced by factors such as lack of control, catastrophic potential, and severity of consequences, such that risk perception can be psychometrically measured by surveys.[67][68][69] Slovic argues that intuitive emotional reactions are the predominant method by which humans evaluate risk, and that a purely statistical approach to disasters lacks emotion and thus fails to convey the true meaning of disasters and fails to motivate proper action to prevent them.[70] This theory has received support from retrospective studies and evolutionary psychology.[71][72][73][74][75][76] Hazards with high perceived risk are therefore, in general, seen as less acceptable and more in need of reduction.[77]

Cultural theory of risk views risk perception as a collective phenomenon by which different cultures select some risks for attention and ignore others, with the aim of maintaining their particular way of life.[78] Hence risk perception varies according to the preoccupations of the culture. The theory outlines two categories, the degree of binding to social groups, the degree of social regulation.[79] Cultural theory can be used to explain why it can be difficult for people with different world-views to agree about whether a hazard is acceptable, and why risk assessments may be more persuasive for some people than others. However, there is little quantitative evidence that shows cultural biases are strongly predictive of risk perception.[80]

Decision theory

[edit]

In decision theory, regret (and anticipation of regret) can play a significant part in decision-making, distinct from risk aversion.[81][82] Framing is also a fundamental problem with all forms of risk assessment.[83] In particular, because of bounded rationality, the risk of extreme events is discounted because the probability is too low to evaluate intuitively. As an example, one of the leading causes of death is road accidents caused by drunk driving – partly because any given driver frames the problem by largely or totally ignoring the risk of a serious or fatal accident. The right prefrontal cortex has been shown to take a more global perspective,[84] while greater left prefrontal activity relates to local or focal processing.[85][86][87] Reference class forecasting is a forecasting method by which biases associated with risks can be mitigated.

Risk taking

[edit]

Psychologists have run randomised experiments with a treatment and control group to ascertain the effect of different psychological factors that may be associated with risk taking,[88] finding that positive and negative feedback about past risk taking can affect future risk taking. For example, one experiment showed that belief in competence correlated with risk-taking behavior.[89] Risk compensation is a theory that suggests that people typically adjust their behavior in response to the perceived level of risk, becoming more careful where they sense greater risk and less careful if they feel more protected.[90] People also show risk aversion, such that they reject fair risky offers because of the perception of loss.[91][92] Further, intuitive responses have been found to be less risk-averse than subsequent reflective response.[93]

Sex differences

[edit]
Sex differences in financial decision making are relevant and significant. Numerous studies have found that women tend to be financially more risk-averse than men and hold safer portfolios.[94][95] Scholarly research has documented systematic differences in financial decisions such as buying investments versus insurance, donating to ingroups versus outgroups (such as terrorism victims in Iraq versus the United States), spending in stores,[96] and the endowment effect-or asking price for goods people have.[97]

Society and culture

[edit]

Risk and autonomy

[edit]

The experience of many people who rely on human services for support is that 'risk' is often used as a reason to prevent them from gaining further independence or fully accessing the community, and that these services are often unnecessarily risk averse.[98] "People's autonomy used to be compromised by institution walls, now it's too often our risk management practices", according to John O'Brien.[99] Michael Fischer and Ewan Ferlie (2013) find that contradictions between formal risk controls and the role of subjective factors in human services (such as the role of emotions and ideology) can undermine service values, so producing tensions and even intractable and 'heated' conflict.[100]

Risk society

[edit]

Anthony Giddens and Ulrich Beck argued that whilst humans have always been subjected to a level of risk – such as natural disasters – these have usually been perceived as produced by non-human forces. Modern societies, however, are exposed to risks such as pollution, that are the result of the modernization process itself. Giddens defines these two types of risks as external risks and manufactured risks.[101] The term Risk society was coined in the 1980s and its popularity during the 1990s was both as a consequence of its links to trends in thinking about wider modernity, and also to its links to popular discourse, in particular the growing environmental concerns during the period.

See also

[edit]

References

[edit]

Bibliography

[edit]
[edit]
Revisions and contributorsEdit on WikipediaRead on Wikipedia
from Grokipedia
Risk is the exposure to the possibility of one or more unfavorable outcomes arising from uncertain events or processes, quantitatively defined as the expected value of losses, computed as the sum over discrete scenarios of the probability of each scenario occurring multiplied by the magnitude of its consequence. This formulation, emphasizing measurable probabilities and impacts, originates from foundational work in probability theory and forms the basis for rigorous risk assessment in fields including statistics, engineering, and economics. In applications ranging from to , risk distinguishes itself from mere by focusing on downside deviations from expected results, often measured via metrics like variance or tail probabilities rather than symmetric deviations. Alternative definitions, such as the standard's "effect of on objectives," encompass both positive and negative deviations but have drawn for conflating opportunity with potential harm, thereby complicating prioritization of genuine threats. Effective management hinges on empirical data to estimate parameters accurately, countering common perceptual errors where low-probability, high-impact events receive outsized attention relative to their statistical contribution.

Historical and Conceptual Foundations

Etymology and Pre-Modern Concepts

The word risk entered the English language in the 1660s, borrowed from French risque, which itself derived from Italian risco or risicare, denoting "danger" or "to run into danger," particularly in the context of maritime ventures. The earliest documented use of a precursor term, Latin resicum, appears in a Genoese notarial dated April 26, 1156, describing hazards in sea loans where lenders shared potential losses from shipwrecks or , but not from "acts of " like storms. This Italian form likely originated from a nautical metaphor rooted in classical Greek rhizikon or rhiza, referring to "cliffs," "roots," or abrupt coastal edges that posed threats to ancient sailors navigating . An alternative etymology links it to rizq, meaning "sustenance" or "divine provision," as invoked in seventh-century Koranic to frame uncertain life outcomes as allocations from , influencing Mediterranean trade semantics. In pre-modern societies, risk lacked formal quantification and was primarily interpreted through religious , , and experiential heuristics rather than probabilistic models. Ancient civilizations, including Mesopotamians and around 2000–500 BCE, viewed uncertain events—such as crop failures, battles, or voyages—as governed by capricious deities or inexorable fate (moira in Greek thought), prompting reliance on oracles, animal sacrifices, and astrological prognostication to mitigate perceived threats without . Roman jurists in the classical period (c. 500 BCE–500 CE) distinguished contractual liabilities from unavoidable misfortunes (casus fortuitus), but treated risk culturally as embedded in social norms and omens, not as a calculable exposure. Medieval European and Islamic contexts advanced practical risk-sharing amid expanding trade, though still tethered to theology. In Islamic scholarship from the eighth century onward, rizq conceptualized future uncertainties as divinely ordained, yet merchants in Baghdad and Cordoba developed early credit instruments like mudaraba partnerships, distributing losses between investors and agents based on venture outcomes. By the 12th century, Genoese and Venetian traders formalized risk in maritime contracts, quantifying premiums for insurable perils (e.g., human error or enemy attack) while excluding divine acts, enabling commerce despite high loss rates—such as 20–30% of ships annually in the Mediterranean. Guilds and confraternities in 14th-century Europe further institutionalized mutual aid against localized hazards like plagues or famines, pooling resources through dues and lotteries, reflecting intuitive diversification without statistical foundations. These approaches prioritized resilience via diversification and reciprocity over prediction, contrasting later mathematical formalizations.

Emergence in Probability Theory (17th-19th Centuries)

The correspondence between and in 1654 marked the inception of modern , prompted by the ""—a query from gambler Chevalier de Méré on fairly dividing stakes in an interrupted dice game. Their exchange resolved the issue by apportioning the pot according to the ratio of favorable outcomes to total possible outcomes for each player, establishing probability as a measurable quantity derived from combinatorial enumeration. This approach shifted analysis of uncertain events from intuition to systematic calculation, laying groundwork for quantifying risks in and beyond, where outcomes involve chance rather than certainty. Christiaan Huygens advanced these ideas in his 1657 treatise De Ratiociniis in Ludo Aleae, the earliest dedicated work on probability, which analyzed various to derive rules for equitable division. Huygens introduced the concept of —the weighted average of possible payoffs, computed as the sum of each outcome multiplied by its probability—demonstrating its use in verifying fair bets where the expectation equals zero. This metric provided a tool for assessing the long-run average return under uncertainty, directly applicable to risk evaluation by contrasting potential gains against probabilistic losses, as in early contracts where premiums reflected expected claims. Practical extensions to emerged in actuarial contexts during the late . In 1671, Dutch statesman commissioned probabilistic valuations of life annuities, employing empirical mortality data to estimate survival odds and set premiums that balanced insurer risk with policyholder benefits. Complementing this, published in 1693 the first empirically grounded , derived from 30 years of birth and death records in , yielding survival probabilities (e.g., about 82% for males reaching age 10, dropping to 1% by age 80) for pricing annuities and quantifying risks. These innovations harnessed probability to pool individual uncertainties into collective predictability, foundational for as a risk-transfer mechanism. Jacob Bernoulli's posthumous Ars Conjectandi (1713) solidified probability's role in risk by proving the law of large numbers: the relative frequency of an event in repeated trials converges to its true probability as trials increase, with quantifiable error bounds. Bernoulli illustrated this with applications to dice, lotteries, and annuities, arguing it justified using observed mortality rates to forecast future claims, thus enabling insurers to manage aggregate risks reliably despite individual variability. In the 18th and 19th centuries, these principles influenced demographic and economic analyses; for instance, Abraham de Moivre's 1738 approximation of the binomial distribution by the normal curve facilitated risk assessments in large-scale events like population mortality. By the early 19th century, Pierre-Simon Laplace's Théorie Analytique des Probabilités (1812) refined asymptotic methods, including precursors to the central limit theorem, extending probabilistic tools to error propagation and predictive modeling in fields prone to uncertainty, such as navigation and public health risks. Collectively, these developments framed risk as the interplay of probability and magnitude of adverse outcomes, shifting it from fatalistic acceptance to calculable mitigation.

20th-Century Formalization and Key Thinkers

Frank H. Knight's 1921 treatise Risk, Uncertainty and Profit provided an early 20th-century formal distinction between risk, characterized by measurable probabilities amenable to statistical estimation (as in or ), and true , involving events with inherently unknowable likelihoods that defy quantification. Knight argued this differentiation explains entrepreneurial profit as a reward for bearing irreducible uncertainty, rather than routine risk, challenging classical economic assumptions of perfect foresight and influencing subsequent theories of economic under incomplete information. In 1944, and advanced a rigorous axiomatic framework in Theory of Games and Economic Behavior, formalizing rational choice under risk via expected theory, where agents evaluate lotteries (probabilistic outcomes) by maximizing the sum of weighted by their probabilities. This approach, grounded in four axioms—completeness, transitivity, continuity, and —enabled the representation of preferences over risky prospects as a utility function, providing a mathematical basis for risk attitudes (aversion, neutrality, or seeking) and influencing fields from to . Harry Markowitz's 1952 paper "Portfolio Selection" in the Journal of Finance quantified risk in investment contexts through , defining it as the standard deviation (or variance) of expected returns to capture total portfolio volatility, while demonstrating how diversification reduces unsystematic risk without altering expected returns. Markowitz's mean-variance optimization model, later extended in the , shifted risk assessment from individual assets to structures, earning him the 1990 in Economics and underpinning quantitative finance practices. Challenging normative expected utility models, and Amos Tversky's 1979 in Econometrica described empirical decision-making under risk via a value function concave for gains () and convex for losses (risk seeking), incorporating —where losses loom larger than equivalent gains—and probability weighting that overvalues low probabilities. This behavioral framework, validated through experiments showing systematic deviations from rationality (e.g., the ), highlighted cognitive biases in , influencing and policy responses to , with Kahneman receiving the 2002 in Economics.

Core Definitions and Distinctions

Linguistic and Dictionary Definitions

The English noun "risk" denotes the possibility of suffering harm, loss, or adverse outcomes, often involving exposure to danger or uncertainty. This aligns with its entry into the language around 1621, borrowed from Italian risco (modern rischio), which itself derived from a nautical term evoking peril such as navigating near cliffs or reefs, symbolizing potential shipwreck or downfall. Early usages treated it as a near-synonym for "hazard," emphasizing a source of potential injury rather than mere probability. Contemporary dictionaries refine this to probabilistic exposure: Merriam-Webster specifies "possibility of loss or injury: peril," encompassing factors like uncertain dangers in activities such as climbing or investing. Oxford Learner's Dictionaries defines it as "the possibility of something bad happening at some time in the future; a situation that could be dangerous or have a bad result," highlighting situational . The Oxford English Dictionary lists eight historical senses, including obsolete ones tied to or fortuitous events, but centers modern usage on exposure to chance-based misfortune, as in commercial or personal endeavors. As a verb, "risk" means to expose someone or something valuable to potential loss or , such as "to risk one's " in a . Linguistically, the term carries connotations of volition or calculation, differentiating it from unavoidable perils; for instance, Samuel Johnson's 1755 framed it as "chance of harm," influencing its evolution toward deliberate undertakings amid uncertainty. In corpus analyses of English usage, "risk" frequently pairs with qualifiers like "high" or "low," reflecting graded assessments of likelihood and severity, though it inherently stresses downside potential over neutral .

Formal Technical Definitions

In risk management, the (ISO) defines risk as "the effect of uncertainty on objectives," where uncertainty refers to the possibility of deviation from expected outcomes, potentially positive or negative, influencing organizational goals such as financial performance or operational continuity. This definition, established in :2009 and retained in the 2018 revision, emphasizes risk as a neutral tied to variability rather than solely threats, enabling systematic identification, analysis, and treatment across contexts. A foundational quantitative definition, originating from early probability applications and formalized in engineering reliability analysis, expresses risk as the product of an event's probability of occurrence and the severity of its consequences: R=p×cR = p \times c, where pp is the likelihood (typically between 0 and 1) and cc quantifies loss in measurable units such as cost, lives, or environmental impact. This formulation, traceable to Daniel Bernoulli's 1738 work on expected utility and widely adopted in fields like nuclear safety, aggregates discrete events into expected loss, assuming independence unless specified otherwise. For scenarios involving multiple potential outcomes, risk is extended to a set of triplets (si,pi,xi)(s_i, p_i, x_i), where sis_i denotes the ii-th , pip_i its probability (pi=1\sum p_i = 1), and xix_i the associated consequence or exposure; the overall risk measure is then the R=i=1NpixiR = \sum_{i=1}^N p_i x_i. This Kaplan-Garrick framework, proposed in 1981 for , provides a structured basis for enumerating uncertainties in complex systems like or , prioritizing scenarios by their contribution to total risk. In statistical , the risk function evaluates a decision rule δ\delta under parameter θ\theta as the R(θ,δ)=Eθ[L(θ,δ(X))]R(\theta, \delta) = E_\theta [L(\theta, \delta(X))], where LL is the loss function measuring deviation between the true parameter and the decision output, and the expectation is over XX distributed according to θ\theta. This approach, central to and Bayes estimation since the mid-20th century, quantifies decision quality by averaging losses across possible states, facilitating comparisons of estimators' performance under without assuming prior distributions unless Bayesian. In , risk is technically defined as the variability of returns, most commonly measured by the standard deviation σ\sigma of an asset's return distribution, capturing dispersion around the mean return and thus the likelihood of outcomes differing from expectations. This metric, rooted in from Harry Markowitz's 1952 work, treats higher σ\sigma as indicative of greater investment risk due to amplified potential for losses, though it assumes symmetric downside and upside impacts unless adjusted via semideviation or . These definitions converge on risk as a function of probabilistic uncertainty and outcome magnitude but diverge in emphasis: ISO prioritizes organizational impact, focuses on modes, statistics on decision optimality, and on return volatility, reflecting domain-specific causal mechanisms from to . Empirical validation often requires context-specific data, such as historical rates in or return series in , to compute parameters accurately.

Risk Versus Uncertainty and Knightian Distinction

The distinction between risk and uncertainty, formalized by economist Frank Knight in his 1921 book Risk, Uncertainty and Profit, delineates situations where outcomes are unpredictable but probabilistically quantifiable from those where no reliable probability measures exist. Knight defined risk as applicable to events governed by known or estimable probability distributions, such as those derived from statistical frequencies in repeatable processes like dice rolls or insurance claims, allowing for mathematical calculation and hedging. In contrast, uncertainty—often termed Knightian uncertainty—refers to unique or non-recurring events where probabilities cannot be objectively determined or verified, rendering standard probabilistic tools inapplicable, as seen in entrepreneurial judgments about novel market conditions or technological innovations. Knight argued that this separation is foundational to understanding economic profit, positing that pure risk, being insurable and diversifiable through , yields no systematic returns beyond or wages, whereas true demands entrepreneurial foresight and judgment, generating profits as a reward for bearing irremediable unpredictability. He emphasized that stems from qualitative changes in human knowledge and societal conditions, not mere variability in known parameters, distinguishing it from processes amenable to . This framework implies that markets cannot fully equilibrate under , as agents cannot contractually allocate it away, leading to persistent entrepreneurial roles and . Subsequent economic analysis has upheld the Knightian divide while noting its interpretive challenges; for instance, empirical studies in confirm that agents treat known-probability gambles (risk) differently from ambiguous prospects (), often exhibiting as predicted by Knight's unmeasurable category. Critics, including some post-Keynesian scholars, contend that Knight overstated the unknowability of probabilities in practice, arguing many "uncertain" events admit subjective Bayesian assessments, though Knight explicitly rejected such personal probabilities as insufficient for objective economic analysis. The distinction remains influential in fields like , where it underpins models distinguishing parametric risk (e.g., volatility) from structural uncertainty (e.g., shifts), and in policy, highlighting limits to predictive modeling in volatile environments like geopolitical conflicts.

Categories of Risk

Economic and Business Risks

Business risk encompasses the potential for a firm to incur lower-than-anticipated profits or outright losses arising from operational, strategic, or environmental factors that disrupt revenue generation or cost structures. These risks are inherent to commercial activities and stem from uncertainties in demand, , supply chains, or internal execution, distinct from pure financial leverage effects on equity returns. Unlike insurable hazards, business risks often require proactive mitigation through diversified strategies or , as they reflect the core volatility of market participation. Economic risks, as a key subset impacting businesses, originate from macroeconomic dynamics such as GDP contractions, inflationary pressures, shifts, or volatility, which alter the broader operating landscape. For international firms, these include policy changes like tariffs or fiscal , amplifying exposure in cross-border ; for instance, devaluations in emerging markets have historically eroded profit margins for exporters by increasing costs or reducing real revenues. Empirical evidence from the 2007-2009 illustrates this: U.S. mortgage-related asset losses triggered a freeze, causing to plummet by over 20% and contributing to a peak rate of 10% by October 2009, with small firms facing disproportionate rates due to restricted financing. In contemporary assessments, economic conditions rank as a primary near-term threat to enterprises, with surveys of executives citing downturn risks alongside and labor market disruptions as top concerns for 2025. The World Economic Forum's Global Risks Report 2025, drawing from over 900 expert inputs, flags persistent economic downturns as a core short-term peril, exacerbated by burdens and frictions that constrain global supply chains and elevate input costs for manufacturers. Businesses in cyclical sectors like or retail exhibit heightened sensitivity, where a 1% GDP decline can correlate with 2-3% drops in operating income, underscoring the causal link between shocks and firm-level outcomes. Key categories of economic and business risks include:
  • Strategic risks: Stem from misaligned decisions, such as failing to anticipate competitive shifts; for example, retailers ignoring trends pre-2010 suffered erosion to online platforms.
  • Operational risks: Arise from process breakdowns or external disruptions, quantified in events like the 2021 blockage, which halted 12% of global trade and inflated shipping costs by up to 400% for affected importers.
  • Compliance and regulatory risks: Involve penalties from policy shifts, as seen in evolving trade barriers post-2018 U.S.- tariffs, which raised costs for 60% of surveyed U.S. firms by an average of 1% of total .
  • Market and demand risks: Driven by volatility amid cycles, where recessions amplify unpaid invoices and gluts, eroding .
Firms quantify these via metrics like variability or modeling, with higher operating leverage amplifying exposure—evident in industries where fixed costs constitute over 60% of expenses, magnifying downturn impacts. While mainstream analyses from bodies like the WEF provide aggregated insights, they warrant scrutiny for potential overemphasis on interconnected global threats at the expense of firm-specific causal factors, such as managerial foresight in hedging currency exposures.

Financial and Investment Risks

Financial and investment risks refer to the potential for adverse outcomes in financial positions or portfolios due to uncertainties in market conditions, counterparties, or asset . These risks can result in principal loss, reduced returns, or inability to access funds, impacting both individual investors and institutions. In , as developed by in 1952, total investment risk is decomposed into , which cannot be eliminated through diversification, and unsystematic risk, which can be reduced by spreading investments across uncorrelated assets. Market risk, a primary , arises from fluctuations in asset prices driven by macroeconomic factors such as changes, , or geopolitical events. For equities, this is often quantified using beta, the sensitivity of an asset's returns to market returns, calculated as βi=Cov(ri,rm)Var(rm)\beta_i = \frac{\mathrm{Cov}(r_i, r_m)}{\mathrm{Var}(r_m)}, where rir_i is the asset return and rmr_m is the market return. High-beta assets amplify market movements, as evidenced during the 2022 market downturn when the fell 19.4%, disproportionately affecting leveraged portfolios. , a subset, impacts fixed-income securities; for instance, a 1% rise in rates can decrease a 10-year bond's value by approximately 8-10% due to duration effects. and price risks similarly expose international or resource-dependent investments to volatility. Credit risk involves the possibility of loss from a borrower's failure to meet obligations, prevalent in bonds, loans, and derivatives. Ratings agencies like Moody's assign grades from Aaa (minimal risk) to C (default imminent), with historical data showing investment-grade bonds defaulting at 0.1-0.5% annually versus 4-10% for high-yield. The illustrated systemic credit risk amplification, where subprime mortgage defaults led to $1.6 trillion in global bank write-downs. Investors mitigate this through diversification and credit default swaps, though correlation spikes during stress periods limit effectiveness. Liquidity risk manifests as the inability to sell assets or raise funds quickly without substantial price concessions, exacerbated in illiquid markets like or during panics. The 2020 COVID-19 market turmoil saw temporary liquidity dry-ups, with some corporate bond spreads widening 300-500 basis points before interventions restored access. Funding liquidity risk affects institutions reliant on short-term borrowing, as seen in the 2007-2008 runs on funds. Metrics like the bid-ask spread or trading volume gauge this, with low-liquidity assets exhibiting higher risk premiums to compensate investors. Operational risk, though broader, intersects investments via internal failures, , or system breakdowns, such as the 2021 Archegos Capital collapse, which inflicted $5.5 billion in losses on banks due to exposures. Regulatory frameworks like impose capital requirements for these risks, mandating banks hold buffers against potential losses. risk erodes real returns, particularly for cash or fixed-income holdings; from 2021-2023, U.S. CPI averaged 6.6% annually, outpacing many bond yields and diminishing . Effective management combines diversification, hedging via , and , though no strategy fully eliminates exposure given inherent uncertainties.

Health and Biological Risks

Health and biological risks encompass threats to well-being arising from pathogens, genetic factors, physiological malfunctions, and modifiable influences that precipitate . Biological hazards specifically include disease-causing agents such as , viruses, fungi, parasites, and biotoxins, which can transmit via airborne particles, contaminated or , direct contact, or vectors like . These agents adversely affect by invading tissues, eliciting immune responses, or producing toxins, with risks amplified in settings of poor , , or occupational exposure. Infectious diseases represent acute biological risks, contributing substantially to global disability and mortality; bacterial infections accounted for 415 million disability-adjusted life years (DALYs) lost, while viral infections linked to 178 million DALYs among 85 tracked pathogens. Lower respiratory infections rank fourth among leading global causes of death, claiming 2.6 million lives in 2019, often from bacterial or viral etiologies like Streptococcus pneumoniae or influenza. Vector-borne diseases, transmitted by mosquitoes or ticks, cause over 700,000 deaths annually, with malaria alone affecting 249 million cases in 2022, predominantly in sub-Saharan Africa. Emerging pathogens, such as SARS-CoV-2, highlight zoonotic spillover risks, where animal reservoirs facilitate human epidemics, as evidenced by the COVID-19 pandemic's 7 million confirmed deaths by mid-2023. Noncommunicable diseases (NCDs), driven by biological vulnerabilities like cellular aging, , and metabolic dysregulation, dominate chronic health risks, responsible for 43 million deaths in 2021—75% of non-pandemic global mortality. Ischaemic heart disease leads as the top killer, at 13% of total deaths (9 million annually), followed by (6 million), with risks escalating from and rooted in and lipid accumulation. Cancers, involving uncontrolled cellular proliferation from genetic mutations or environmental triggers, caused 10 million deaths in 2020, with alone linked to 1.8 million fatalities, often from -induced DNA damage. Key modifiable risk factors—tobacco use, poor nutrition, physical inactivity, and excessive alcohol—interact causally with biological pathways, such as in , which affects 422 million adults worldwide and elevates cardiovascular event probabilities by 2-4 fold in affected individuals. Genetic and hereditary risks stem from inherited or de novo mutations altering protein function or gene regulation, predisposing to disorders like (prevalence 1 in 2,500-3,500 Caucasian births) or (1 in 10,000-20,000 globally). Approximately 7,000-8,000 rare genetic conditions affect 300-400 million people worldwide, with 80% monogenic and often recessive, yielding carrier frequencies up to 1 in 20 for conditions like Tay-Sachs in . Polygenic risks compound for common diseases; variants in genes like APOE elevate Alzheimer's odds by 3-15 fold depending on allele count, while confer 45-85% lifetime risk in carriers versus 12% baseline. Family history amplifies empirical risk estimates, as twin studies show heritability coefficients of 30-80% for traits like , underscoring causal roles of variants over environmental confounders alone. Biological risks extend to reproductive and developmental domains, where maternal infections or genetic anomalies yield congenital anomalies in 3-5% of births globally, including defects from folate metabolism disruptions (prevalence 1 in 1,000 without supplementation). Aging itself constitutes a cumulative , with telomere shortening and driving frailty; centenarians exhibit lower risks via genetic factors like variants, but population-level probabilities of rise exponentially post-70, linking to 90% of deaths in those over 65 from NCDs. hinges on empirical interventions like (reducing mortality 73% since 2000) and , yet persistent gaps in low-resource areas sustain higher incidence rates.

Environmental and Ecological Risks

Environmental and ecological risks refer to the potential for adverse outcomes to ecosystems, , and human populations arising from natural variability, alterations, , and other stressors. These risks manifest through processes such as decline, ecosystem disruption, and amplified exposure to hazards like , often quantified via ecological risk assessments that evaluate stressor exposure and response probabilities. Empirical data indicate that land-use changes, including and expansion, contribute to ecological degradation, with tropical primary loss totaling 3.7 million hectares in 2023, down 9% from 2022 but persistent at levels seen in prior years. Biodiversity loss represents a core ecological risk, driven primarily by , , and rather than isolated factors. Global populations have declined by an average of 73% since 1970, based on monitored species indices, signaling potential tipping points in forests and reefs. Over 46,000 were assessed as threatened with in 2024, with rates estimated at 10 to 100 times background levels, though surveys suggest around 30% of may have been impacted since human industrialization began. In the United States, 34% of and 40% of animal face risk, alongside 41% of ecosystems vulnerable to . Pollution poses direct risks to both ecological integrity and human health, with airborne particulates and chemicals altering habitats and inducing . Pollution accounts for approximately 9 million premature deaths annually worldwide, equivalent to one in six total deaths, through mechanisms like and cardiovascular strain. Air pollution alone causes 6.5 to 7.9 million deaths per year, exacerbating ecosystem stressors such as deposition that impairs and aquatic health. These impacts are compounded by and contaminants, which reduce and stability, though mitigation via regulatory controls has shown localized reductions in some pollutants. Climate variability introduces risks via intensified hydro-meteorological events, though observed increases in disaster frequency partly reflect improved detection and reporting rather than solely causal shifts. , 403 and disasters exceeding $1 billion in damages occurred from 1980 to 2024, with recent years averaging shorter intervals between events compared to the . Globally, numbered around 398 annually from 1995 to 2022, with bearing the highest burden, yet death rates have declined due to better . Verifiable impacts include altered patterns leading to droughts and floods, affecting and , while 58% of known human infectious diseases have been aggravated by climatic hazards at some historical point.

Technological and Operational Risks

Operational risks involve the potential for direct or indirect financial losses stemming from inadequate or failed internal processes, human errors, system malfunctions, or external events not attributable to market or credit factors. The formalized this as "the risk of loss resulting from inadequate or failed internal processes, people and systems or from external events," a definition adopted in frameworks like to guide capital requirements for financial institutions. This encompasses disruptions from procedural lapses, such as erroneous or supply chain breakdowns, which can cascade into broader operational halts; empirical data from banking sectors show these events accounted for up to 20% of total risk losses in analyzed periods pre-2008, though measurement challenges persist due to underreporting. Technological risks, frequently a subset of operational risks, arise specifically from deficiencies in hardware, software, networks, or systems, leading to failures like outages, , or integration errors. These risks materialize when underperforms relative to expectations, such as through untested updates or incompatible legacy systems, potentially causing immediate shortfalls or long-term compliance issues. For example, system failures in have disrupted major enterprises, with outages averaging 1-2 hours per incident but amplifying losses through compounded downtime effects, as seen in empirical studies of implementations. Regulatory classifications delineate operational risks into seven event types: internal fraud (e.g., unauthorized employee transactions), external fraud (e.g., or ), employment practices and workplace safety (e.g., claims or injuries), clients, products, and practices (e.g., product defects or misleading ), damage to physical assets (e.g., affecting facilities), disruption and failures (e.g., IT blackouts), and execution, delivery, and process management (e.g., errors). Technological dimensions dominate the latter two, where hardware obsolescence or software bugs have historically triggered outsized impacts; a 2023 analysis of global incidents revealed IT-related disruptions contributing to over 40% of operational downtime in non-financial sectors. Mitigation relies on robust testing and redundancy, yet causal factors like rushed deployments often prevail, underscoring the need for first-principles validation of reliability over assumed vendor assurances. Prominent cases highlight severity: process failures, such as inadequate oversight, led to supply disruptions in , with one study documenting average losses of $1.5 million per event from unchecked third-party errors. In technological realms, vulnerabilities have precipitated failures, including unpatched software enabling unintended escalations, as in enterprise migrations where 30% of projects exceed budgets due to unforeseen compatibility issues. External events intersecting with , like power grid failures affecting centers, further amplify risks, with historical outages costing firms up to $5,600 per minute in high-stakes operations. Quantifying these remains imprecise, as loss distributions exhibit fat tails from rare but extreme events, demanding scenario-based modeling over historical averages alone.

Security and Geopolitical Risks

Security risks refer to potential to physical, informational, or cyber assets that could exploit vulnerabilities, leading to adverse impacts such as data breaches, operational disruptions, or . These risks are quantified by the likelihood of a threat occurring and the magnitude of its consequences, often managed through identification, assessment, and processes. In organizational contexts, risk involves continuous evaluation of threats like unauthorized access or , with cyber variants comprising a growing share due to interconnected systems. Prominent examples include nation-state sponsored cyberattacks, which surged in sophistication by 2025, targeting through methods like compromises and AI-enhanced . The 2020 SolarWinds incident, attributed to Russian actors, compromised thousands of entities, illustrating how such breaches enable and disruption without kinetic action. risks, such as or industrial , persist, with global incidents rising amid instability; for instance, attacks on energy facilities in the disrupted supplies in 2024. Geopolitical risks stem from interstate tensions, policy shifts, and conflicts that unpredictably affect , supply chains, and . These encompass wars, sanctions, trade barriers, and multipolar power dynamics, where multiple actors like the , , and compete, amplifying uncertainty. Unlike domestic security threats, geopolitical risks often cascade globally; Russia's 2022 invasion of elevated European energy prices by over 300% in peak months, straining economies dependent on imports. In the World Economic Forum's Global Risks Report 2025, the perception of escalating or spreading conflicts ranked as the foremost short-term risk, outpacing environmental or technological concerns among surveyed experts. Key 2025 flashpoints include US-China rivalry over , potential escalation in the Israel-Hamas conflict, and protectionist trade policies fragmenting global markets. These risks heighten volatility in commodities and investments, with empirical studies showing a 1% increase in geopolitical tension indices correlating to 0.5-1% drops in equity returns in affected regions. Mitigation typically involves diversification, , and diplomatic hedging, though inherent unpredictability limits precision.

Quantitative Methods for Risk Description

Probability Distributions and Expected Values

In quantitative risk analysis, probability distributions provide a mathematical framework for describing the associated with potential adverse outcomes, assigning probabilities to different possible states or magnitudes of loss. A risk event can be modeled as a whose distribution captures both the likelihood of occurrence and the variability in impact, enabling the computation of metrics like . For discrete risks with a finite number of , each characterized by a state sis_i, probability pip_i, and severity xix_i (where pi=1\sum p_i = 1), the RR is given by R=i=1NpixiR = \sum_{i=1}^{N} p_i x_i. This formulation, often termed expected monetary value (EMV) in project and contexts, quantifies the average outcome over many hypothetical realizations, weighting each scenario by its probability. For continuous risks, the distribution is described by a probability density function p(x)p(x), with the expected value computed as the integral xp(x)dx\int x \, p(x) \, dx over the support of xx. Common distributions in risk modeling reflect empirical patterns in event frequencies and severities; for instance, the Poisson distribution is frequently applied to count rare, independent events over a fixed interval, such as failures in operational systems, with expected value equal to its rate parameter λ\lambda. The binomial distribution suits scenarios involving a fixed number of Bernoulli trials (e.g., success/failure outcomes in quality control), where the expected value is npnp with nn trials and success probability pp. Severity distributions often employ the lognormal form, appropriate for positive-valued losses like financial damages or claim amounts, which exhibit right-skewness and heavy tails matching observed data from insurance and catastrophe modeling; its expected value is eμ+σ2/2e^{\mu + \sigma^2/2}, where μ\mu and σ\sigma are the mean and standard deviation of the underlying normal distribution. These distributions are selected based on causal mechanisms and data fit rather than assumption, with parameters estimated from historical frequencies or expert elicitation to ensure the model aligns with verifiable evidence. For example, in , Poisson is preferred for event counts due to its derivation from limiting binomial processes under low probabilities, avoiding overestimation in sparse data regimes. s derived from such distributions inform baseline risk exposure but assume linearity in aggregation, potentially understating compound effects across interdependent risks. Validation against empirical outcomes, such as relative frequencies from past incidents, is essential to confirm distributional adequacy before applying the expected value as a decision metric.

Statistical Measures of Variability

Statistical measures of variability quantify the dispersion of outcomes around their , such as the , providing a numerical assessment of inherent in probabilistic risk descriptions. In risk analysis, these metrics highlight the potential for deviations from anticipated results, where elevated dispersion signals greater unpredictability and thus higher risk exposure, independent of the outcome. Common measures encompass range, variance, standard deviation, and , each offering distinct insights into spread, with variance and its derivatives particularly prominent in financial and quantitative risk frameworks due to their integration with probability distributions. The range, computed as the difference between the maximum and minimum observed values, serves as a basic indicator of total variability but is highly sensitive to outliers and ignores the distribution of intermediate points, limiting its in robust risk assessments. More sophisticated measures like variance address this by averaging squared deviations from the , penalizing larger discrepancies disproportionately; for a dataset of returns rir_i, population variance is σ2=1N(rirˉ)2\sigma^2 = \frac{1}{N} \sum (r_i - \bar{r})^2, where rˉ\bar{r} is the return and NN the number of observations. In , variance quantifies return volatility as a core risk metric, underpinning models like mean-variance optimization in portfolio theory, though it equates upside and downside fluctuations despite risk often focusing on adverse outcomes. Standard deviation, the positive of variance (σ=σ2\sigma = \sqrt{\sigma^2}
Add your contribution
Related Hubs
User Avatar
No comments yet.