Recent from talks
Nothing was collected or created yet.
5-HT2B receptor
View on Wikipedia
5-Hydroxytryptamine receptor 2B (5-HT2B) also known as serotonin receptor 2B is a protein that in humans is encoded by the HTR2B gene.[5][6] 5-HT2B is a member of the 5-HT2 receptor family that binds the neurotransmitter serotonin (5-hydroxytryptamine, 5-HT). Like all 5-HT2 receptors, the 5-HT2B receptor is Gq/G11-protein coupled, leading to downstream activation of phospholipase C.
Tissue distribution and function
[edit]First discovered in the stomach of rats, 5-HT2B was challenging to characterize initially because of its structural similarity to the other 5-HT2 receptors, particularly 5-HT2C.[7] The 5-HT2 receptors (of which the 5-HT2B receptor is a subtype) mediate many of the central and peripheral physiologic functions of serotonin. Cardiovascular effects include contraction of blood vessels and shape changes in platelets; central nervous system (CNS) effects include neuronal sensitization to tactile stimuli and mediation of some of the effects of hallucinogenic substituted amphetamines. The 5-HT2B receptor is expressed in several areas of the CNS, including the dorsal hypothalamus, frontal cortex, medial amygdala, and meninges.[8] However, its most important role is in the peripheral nervous system (PNS) where it maintains the viability and efficiency of the cardiac valve leaflets.[9]
The 5-HT2B receptor subtype is involved in:
- CNS: inhibition of serotonin and dopamine uptake, behavioral effects[10]
- Vascular: pulmonary vasoconstriction[11]
- Cardiac: The 5-HT2B receptor regulates cardiac structure and functions, as demonstrated by the abnormal cardiac development observed in 5-HT2B receptor null mice.[12] Excessive stimulation of this receptor causes pathological proliferation of cardiac valve fibroblasts,[13] with chronic overstimulation leading to valvulopathy.[14][15] These receptors are also overexpressed in human failing heart and antagonists of 5-HT2B receptors were discovered to prevent both angiotensin II or beta-adrenergic agonist-induced pathological cardiac hypertrophy in mouse.[16][17][18]
- Serotonin transporter: 5-HT2B receptors regulate serotonin release via the serotonin transporter, and are important both to normal physiological regulation of serotonin levels in blood plasma,[19] and with the abnormal acute serotonin release produced by drugs such as MDMA.[10] Surprisingly, however, 5-HT2B receptor activation appears to be protective against the development of serotonin syndrome following elevated extracellular serotonin levels,[20] despite its role in modulating serotonin release.
Clinical significance
[edit]Valvular heart disease
[edit]5-HT2B receptors have been strongly implicated in causing drug-induced valvular heart disease.[21][22][23] The Fen-Phen scandal in the 80s and 90s revealed the cardiotoxic effects of 5-HT2B stimulation.[24] Today, 5-HT2B agonism is considered a toxicity signal precluding further clinical development of a compound.[25]
Migraines
[edit]The non-selective serotonin receptor agonist meta-chlorophenylpiperazine (mCPP) induces migraines and this may be due to serotonin 5-HT2B receptor agonism.[26] Serotonin 5-HT2 receptor antagonists used as antimigraine agents, such as methysergide, cyproheptadine, and pizotifen, may be producing their antimigraine effects specifically via serotonin 5-HT2B receptor antagonism.[26]
Ligands
[edit]The structure of the 5-HT2B receptor was resolved in a complex with the valvulopathogenic drug ergotamine.[27] As of 2009, few highly selective 5-HT2B receptor ligands have been discovered, although numerous potent non-selective compounds are known, particularly agents with concomitant 5-HT2C binding. Research in this area has been limited due to the cardiotoxicity of 5-HT2B agonists, and the lack of clear therapeutic application for 5-HT2B antagonists, but there is still a need for selective ligands for scientific research.[28]
Agonists
[edit]Endogenous
[edit]- 5-Methoxytryptamine (5-MT) – trace amine[29][30]
- DMT – trace amine[31][32][33][34]
- Serotonin – neurotransmitter, KD ≈ 10 nM[35][36][37]
- Tryptamine – trace amine[35][37]
Selective
[edit]- 6-APB – ~100-fold selectivity over the 5-HT2A and 5-HT2C receptors, ≥32-fold selectivity over monoamine release, ~12-fold selectivity over α2C-adrenergic receptor[31][38]
- α-Methylserotonin – ~10-fold selectivity over 5-HT2A and 5-HT2C[35][39][37]
- BW-723C86 – 100-fold selectivity over 5-HT2A but only 3- to 10-fold selectivity over 5-HT2C,[35][40] fair functional subtype selectivity, almost full agonist, anxiolytic in vivo[41]
- LY-266,097 – biased partial agonist in favor of Gq protein, no β-arrestin2 recruitment[42]
- VU6067416 – modest selectivity over 5-HT2A and 5-HT2C[43]
Non-selective
[edit]- 25C-NBOMe[31][44]
- 25I-NBOMe[31][44]
- 2C-B[31][44]
- 2C-B-FLY[31][45]
- 2C-C[31][44]
- 2C-D[31][44]
- 2C-E[31][44]
- 2C-I[31][44]
- 4-Methylamphetamine[31]
- 5-APB[31][46][38]
- 5-APDB[31]
- 5-Carboxamidotryptamine[37]
- 5-MAPB[46]
- 6-APB[38]
- 6-APDB[31]
- 6-MAPB[46]
- 5-MeO-αMT[31][33]
- 5-MeO-DiPT
- 5-MeO-DMT[43]
- 5-MeO-MiPT[31][33]
- AL-38022A[47]
- Aminorex (weakly)[48][49]
- Ariadne[50]
- Benfluorex[51]
- Bromo-dragonfly[45][52][53]
- Bromocriptine[54]
- Cabergoline[55][36]
- Chlorphentermine (very weakly)[48]
- CYB210010 (2C-T-TFM)[56][57]
- Dexfenfluramine[58]
- Dexnorfenfluramine[58]
- Dihydroergocryptine[59]
- Dihydroergotamine[55][60]
- DiPT[31][33]
- DOB[31][37]
- DOC[31]
- DOET[61]
- DOI[31][37][36]
- DOM[31][61]
- Ergometrine (ergonovine)[55]
- Ergotamine[55][58][36]
- Fenfluramine[58][36]
- Fenoldopam[36]
- Guanfacine – an α2A-adrenergic agonist, but has 5-HT2B agonistic activity at therapeutic concentrations[36][62]
- Levofenfluramine[58]
- Levonorfenfluramine[58]
- Lorcaserin[55]
- LSD – about equal affinity for human cloned 5-HT2B and 5-HT2A receptors[63][33][64]
- LSM-775[65]
- mCPP (in humans; weak partial agonist)[58][37]
- MDA[31][66]
- MDMA[34][66]
- MEM[67]
- Mescaline[34]
- Methylergometrine (methylergonovine)[55][58][36]
- Methysergide (antagonist in some studies)[58][36][68]
- Naphthylaminopropane[69]
- Norfenfluramine[58][36][40]
- ORG-12962[37]
- ORG-37684[68]
- Oxymetazoline[36]
- Pergolide[55][36][70]
- PNU-22394
- Psilocin[63][64]
- Psilocybin[64]
- Quipazine (weak partial agonist)[37]
- Ro60-0175 – functionally selective over 5-HT2A, potent agonist at both 5-HT2B/C[35][40]
- Ropinirole[36]
- Quinidine[36]
- TFMPP (weak partial agonist)[37]
- VER-3323 – mixed 5-HT2C and 5-HT2B agonist with weaker 5-HT2A affinity[68]
- Xylometazoline[36]
Peripherally selective
[edit]Inactive
[edit]A number of notable drugs appear to be inactive or very weak as serotonin 5-HT2B receptor agonists, at least in vitro.[31] These include the stimulants and/or entactogens dextroamphetamine, dextromethamphetamine, 4-fluoroamphetamine, 4-fluoromethamphetamine, phentermine, methylone, mephedrone, MDAI, and MMAI, among others.[31][48][38][72][73][74] Findings are somewhat conflicting for certain psychedelics, such as psilocin and LSD, but most studies find that these drugs are indeed potent serotonin 5-HT2B receptor agonists.[64][31][33]
Antagonists
[edit]Selective
[edit]- 5-HCPC[75][76]
- 5-HPEC (weak)[75]
- 5-HPPC[75]
- AM1125[75]
- AM1476[75]
- BF-1 – derived from pimethixene[75][77][78]
- EGIS-7625 – high selectivity over 5-HT2A[77][79][80]
- EXT5 – highly selective[75][81]
- EXT9 – somewhat selective[75][81]
- LY-23,728[82]
- LY-266,097 – pKi = 9.7, 100-fold selectivity over 5-HT2A and 5-HT2C[35][82]
- LY-272,015 – fairly selective and highly potent[35]
- LY-287,375[82][83]
- MRS7925 – substantially selective over 5-HT2A and 5-HT2C but minimal selectivity over the adenosine A1 receptor[84]
- MRS8209[85]
- MW071 (MW01-8-071HAB) – non-MAOI minaprine analogue[86]
- MW073 – highly selective, orally bioavailable[87]
- PRX-08066 – Ki ≈ 1.7 nM, >100-fold selectivity[75][77][35]
- RQ-00310941 (RQ-941) – Ki = 2.0 nM, IC50 = 17 nM, >2,000-fold selectivity against >60 targets, under development for medical use[75][88][89]
- RS-127,445 (MT-500) – Ki = 0.3 nM, >1,000-fold selectivity over 5-HT2A and 5-HT2C and numerous other targets, selective over at least eight other serotonin receptors, developed for clinical use but discontinued[75][35][77][90][68]
- SB-204,741 – >135-fold selectivity over 5-HT2C and 5-HT2A[91]
- SB-215,505 – mixed 5-HT2B and 5-HT2C antagonist[35][77][92]
- VU6047534 – weak partial agonist or antagonist, peripherally selective in mice but not humans[93][94]
Non-selective
[edit]- 2-Bromo-LSD (BOL-148; bromolysergide)[95]
- (–)-MBP – 5-HT2A antagonist, 5-HT2B inverse agonist, and 5-HT2C agonist[96]
- Agomelatine – primarily a melatonin MT1/MT2 receptor agonist, with a less potent antagonism of 5-HT2B and 5-HT2C[97]
- AMAP102 (AMAP-102) – 5-HT2B and 5-HT2C antagonist[75][98]
- Amesergide (LY-237733)
- Amisulpride
- Amitriptyline
- Apomorphine
- Aripiprazole[35]
- Asenapine[35]
- BMB-201 – and active form BMB-39a[99]
- Brexpiprazole
- Brilaroxazine
- C-122[75][35]
- Cariprazine[35][100]
- Chlorpromazine
- Clozapine[68][35]
- Cyproheptadine
- Desmethylclozapine (NDMC; norclozapine)
- Ibogainalog[101]
- ITI-1549[102]
- KB-128 – 5-HT2A and 5-HT2B antagonist and 5-HT2C agonist[103]
- Lisuride – a dopamine agonist of the ergoline class, that is also a 5-HT2B antagonist[104] and a dual 5-HT2A/C agonist[105]
- Lurasidone
- LY-53857
- Mesulergine[68]
- Metadoxine – a 5-HT2B antagonist and GABA-activity modulator[106]
- Metergoline[68]
- Metitepine (methiothepin)[68]
- Mianserin[68]
- Molindone[107][108]
- N-Methylamisulpride
- Nantenine[75]
- Naphthylpiperazine (1-NP)
- Olanzapine
- Pimethixene[78]
- Pipamperone
- Pizotifen (pizotyline)
- Promethazine[109]
- Quetiapine
- Rauwolscine[35]
- Risperidone
- Ritanserin[35][68]
- SB-200,646 – 5-HT2B/5-HT2C antagonist, selective over 5-HT2A
- SB-206,553 – mixed 5-HT2B and 5-HT2C antagonist and PAM at α7 nAChR[77][110][111][68]
- SB-221,284 – 5-HT2B/5-HT2C antagonist[39][68]
- SB-228,357 – 5-HT2B/5-HT2C antagonist
- SDZ SER-082 – a mixed 5-HT2B/C antagonist
- Spiperone
- Tabernanthalog (TBG; DLX-007)[101]
- Tegaserod – primarily a 5-HT4 agonist, but also a 5-HT2B antagonist[112][113]
- Terguride – an oral, potent antagonist of 5-HT2A and 5-HT2B receptors[77][35]
- Trazodone[68]
- Vabicaserin[114]
- Viloxazine – weak 5-HT2B antagonist and 5-HT2C agonist[115][116]
- Xanomeline – similar affinity as for muscarinic acetylcholine receptors[93][117][118]
- Yohimbine[35]
- Zalsupindole (DLX-001; AAZ-A-154)[119]
- Ziprasidone
Unknown or unsorted selectivity
[edit]Peripherally selective
[edit]- MRS8209[123]
- Sarpogrelate (MCI-9042, LS-187,118) – non-selective 5-HT2 antagonist, but ~2 orders of magnitude lower affinity at 5-HT2B than at 5-HT2A[124][125]
- VU0530244 – 5-HT2B-selective[126]
- VU0631019 – 5-HT2B-selective[126]
- VU6055320 – 5-HT2B-selective[93][94]
- Others (e.g., "compound 19c")[127]
BW-501C67 and xylamidine are known peripherally selective antagonists of the serotonin 5-HT2 receptors, including of the serotonin 5-HT2A and 5-HT2B receptors, but their serotonin 5-HT2B receptor interactions do not appear to have been described.[128][129][130]
Possible applications
[edit]5-HT2B antagonists have previously been proposed as treatment for migraine headaches, and RS-127,445 was trialled in humans up to Phase I for this indication, but development was not continued.[131] More recent research has focused on possible application of 5-HT2B antagonists as treatments for chronic heart disease.[132][133] Research claims serotonin 5-HT2B receptors have effect on liver regeneration.[134] Antagonism of 5-HT2B may attenuate fibrogenesis and improve liver function in disease models in which fibrosis is pre-established and progressive.
See also
[edit]References
[edit]- ^ a b c GRCh38: Ensembl release 89: ENSG00000135914 – Ensembl, May 2017
- ^ a b c GRCm38: Ensembl release 89: ENSMUSG00000026228 – Ensembl, May 2017
- ^ "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
- ^ "Entrez Gene: HTR2B 5-hydroxytryptamine (serotonin) receptor 2B".
- ^ Schmuck K, Ullmer C, Engels P, Lübbert H (Mar 1994). "Cloning and functional characterization of the human 5-HT2B serotonin receptor". FEBS Letters. 342 (1): 85–90. Bibcode:1994FEBSL.342...85S. doi:10.1016/0014-5793(94)80590-3. PMID 8143856. S2CID 11232259.
- ^ Frazer A, Hensler HG (1999). "Serotonin". Basic Neurochemistry: Molecular, Cellular and Medical Aspects (6th ed.). Lippincott-Raven.
- ^ Bonhaus DW, Bach C, DeSouza A, Salazar FH, Matsuoka BD, Zuppan P, et al. (June 1995). "The pharmacology and distribution of human 5-hydroxytryptamine2B (5-HT2B) receptor gene products: comparison with 5-HT2A and 5-HT2C receptors". British Journal of Pharmacology. 115 (4): 622–8. doi:10.1111/j.1476-5381.1995.tb14977.x. PMC 1908489. PMID 7582481.
- ^ Enna SJ, Bylund DB, eds. (2008). XPharm: the comprehensive pharmacology reference. Amsterdam: Elsevier. ISBN 978-0-08-055232-3. OCLC 712018683.
- ^ a b Doly S, Valjent E, Setola V, Callebert J, Hervé D, Launay JM, et al. (Mar 2008). "Serotonin 5-HT2B receptors are required for 3,4-methylenedioxymethamphetamine-induced hyperlocomotion and 5-HT release in vivo and in vitro". The Journal of Neuroscience. 28 (11): 2933–40. doi:10.1523/JNEUROSCI.5723-07.2008. PMC 6670669. PMID 18337424.
- ^ Launay JM, Hervé P, Peoc'h K, Tournois C, Callebert J, Nebigil CG, et al. (Oct 2002). "Function of the serotonin 5-hydroxytryptamine 2B receptor in pulmonary hypertension" (PDF). Nature Medicine. 8 (10): 1129–35. doi:10.1038/nm764. PMID 12244304. S2CID 20736218.
- ^ Nebigil CG, Hickel P, Messaddeq N, Vonesch JL, Douchet MP, Monassier L, et al. (Jun 2001). "Ablation of serotonin 5-HT(2B) receptors in mice leads to abnormal cardiac structure and function". Circulation. 103 (24): 2973–9. doi:10.1161/01.cir.103.24.2973. PMID 11413089.
- ^ Elangbam CS, Job LE, Zadrozny LM, Barton JC, Yoon LW, Gates LD, et al. (Aug 2008). "5-hydroxytryptamine (5HT)-induced valvulopathy: compositional valvular alterations are associated with 5HT2B receptor and 5HT transporter transcript changes in Sprague-Dawley rats". Experimental and Toxicologic Pathology. 60 (4–5): 253–62. Bibcode:2008EToxP..60..253E. doi:10.1016/j.etp.2008.03.005. PMID 18511249.
- ^ Padhariya K, Bhandare R, Canney D, Velingkar V (2017-12-12). "Cardiovascular Concern of 5-HT2B Receptor and Recent Vistas in the Development of Its Antagonists". Cardiovascular & Hematological Disorders Drug Targets. 17 (2): 86–104. doi:10.2174/1871529X17666170703115111. PMID 28676029.
- ^ Neugebauer V (2020). "Serotonin—pain modulation". Handbook of the Behavioral Neurobiology of Serotonin. Handbook of Behavioral Neuroscience. Vol. 31. Elsevier. pp. 309–320. doi:10.1016/b978-0-444-64125-0.00017-7. ISBN 978-0-444-64125-0. S2CID 212837146.
- ^ Jaffré F, Callebert J, Sarre A, Etienne N, Nebigil CG, Launay JM, et al. (Aug 2004). "Involvement of the serotonin 5-HT2B receptor in cardiac hypertrophy linked to sympathetic stimulation: control of interleukin-6, interleukin-1beta, and tumor necrosis factor-alpha cytokine production by ventricular fibroblasts". Circulation. 110 (8): 969–74. doi:10.1161/01.CIR.0000139856.20505.57. PMID 15302781.
- ^ Monassier L, Laplante MA, Jaffré F, Bousquet P, Maroteaux L, de Champlain J (Aug 2008). "Serotonin 5-HT(2B) receptor blockade prevents reactive oxygen species-induced cardiac hypertrophy in mice". Hypertension. 52 (2): 301–7. doi:10.1161/HYPERTENSIONAHA.107.105551. PMID 18591460.
- ^ Jaffré F, Bonnin P, Callebert J, Debbabi H, Setola V, Doly S, et al. (Jan 2009). "Serotonin and angiotensin receptors in cardiac fibroblasts coregulate adrenergic-dependent cardiac hypertrophy". Circulation Research. 104 (1): 113–23. doi:10.1161/CIRCRESAHA.108.180976. PMID 19023134.
- ^ Callebert J, Esteve JM, Hervé P, Peoc'h K, Tournois C, Drouet L, et al. (May 2006). "Evidence for a control of plasma serotonin levels by 5-hydroxytryptamine(2B) receptors in mice" (PDF). The Journal of Pharmacology and Experimental Therapeutics. 317 (2): 724–31. doi:10.1124/jpet.105.098269. PMID 16461587. S2CID 16099098.
- ^ Diaz SL, Maroteaux L (Sep 2011). "Implication of 5-HT(2B) receptors in the serotonin syndrome". Neuropharmacology. 61 (3): 495–502. doi:10.1016/j.neuropharm.2011.01.025. PMID 21277875. S2CID 14905808.
- ^ Rothman RB, Baumann MH, Savage JE, Rauser L, McBride A, Hufeisen SJ, et al. (Dec 2000). "Evidence for possible involvement of 5-HT(2B) receptors in the cardiac valvulopathy associated with fenfluramine and other serotonergic medications". Circulation. 102 (23): 2836–41. doi:10.1161/01.CIR.102.23.2836. PMID 11104741.
- ^ Fitzgerald LW, Burn TC, Brown BS, Patterson JP, Corjay MH, Valentine PA, et al. (Jan 2000). "Possible role of valvular serotonin 5-HT(2B) receptors in the cardiopathy associated with fenfluramine". Molecular Pharmacology. 57 (1): 75–81. doi:10.1016/S0026-895X(24)26444-0. PMID 10617681.
- ^ Roth BL (Jan 2007). "Drugs and valvular heart disease". The New England Journal of Medicine. 356 (1): 6–9. doi:10.1056/NEJMp068265. PMID 17202450.
- ^ "Archive: How Fen-Phen, a Diet 'Miracle,' Rose and Fell". archive.nytimes.com. Retrieved 2022-07-04.
- ^ Cavero I, Guillon JM (2014-03-01). "Safety Pharmacology assessment of drugs with biased 5-HT(2B) receptor agonism mediating cardiac valvulopathy". Journal of Pharmacological and Toxicological Methods. 69 (2): 150–161. doi:10.1016/j.vascn.2013.12.004. PMID 24361689.
- ^ a b Segelcke D, Messlinger K (April 2017). "Putative role of 5-HT2B receptors in migraine pathophysiology". Cephalalgia. 37 (4): 365–371. doi:10.1177/0333102416646760. PMID 27127104.
- ^ PDB: 4IB4; Wacker D, Wang C, Katritch V, Han GW, Huang XP, Vardy E, et al. (May 2013). "Structural features for functional selectivity at serotonin receptors". Science. 340 (6132): 615–9. Bibcode:2013Sci...340..615W. doi:10.1126/science.1232808. PMC 3644390. PMID 23519215.
- ^ Schuhmacher M (2007). [Chiral arylmethoxytryptamines as 5-HT2B-receptor antagonists: synthesis, analysis and in-vitro pharmacology] (German) (PDF) (Thesis). Ph.D. Dissertation. University of Regensburg. pp. 6–17. Archived from the original (PDF) on 2011-07-18. Retrieved 2008-08-11.
- ^ Amemiya N, Hatta S, Takemura H, Ohshika H (December 1996). "Characterization of the contractile response induced by 5-methoxytryptamine in rat stomach fundus strips". Eur J Pharmacol. 318 (2–3): 403–409. doi:10.1016/s0014-2999(96)00777-7. PMID 9016931.
- ^ Baxter GS, Murphy OE, Blackburn TP (May 1994). "Further characterization of 5-hydroxytryptamine receptors (putative 5-HT2B) in rat stomach fundus longitudinal muscle". Br J Pharmacol. 112 (1): 323–331. doi:10.1111/j.1476-5381.1994.tb13072.x. PMC 1910288. PMID 8032658.
- ^ a b c d e f g h i j k l m n o p q r s t u v w x y Luethi D, Liechti ME (2021). "Drugs of Abuse Affecting 5-HT2B Receptors". 5-HT2B Receptors. The Receptors. Vol. 35. Cham: Springer International Publishing. pp. 277–289. doi:10.1007/978-3-030-55920-5_16. ISBN 978-3-030-55919-9.
- ^ Cameron LP, Olson DE (October 2018). "Dark Classics in Chemical Neuroscience: N, N-Dimethyltryptamine (DMT)". ACS Chem Neurosci. 9 (10): 2344–2357. doi:10.1021/acschemneuro.8b00101. PMID 30036036.
- ^ a b c d e f Rickli A, Moning OD, Hoener MC, Liechti ME (August 2016). "Receptor interaction profiles of novel psychoactive tryptamines compared with classic hallucinogens" (PDF). Eur Neuropsychopharmacol. 26 (8): 1327–1337. doi:10.1016/j.euroneuro.2016.05.001. PMID 27216487.
- ^ a b c Tagen M, Mantuani D, van Heerden L, Holstein A, Klumpers LE, Knowles R (September 2023). "The risk of chronic psychedelic and MDMA microdosing for valvular heart disease". J Psychopharmacol. 37 (9): 876–890. doi:10.1177/02698811231190865. PMID 37572027.
- ^ a b c d e f g h i j k l m n o p q r s Maroteaux L, Monassier L, Launay JM (2013). "Contribution of Serotonin 5-HT2B Receptors to Health and Disease". In Hall FS (ed.). Serotonin: Biosynthesis, Regulation and Health Implications. New York: Nova Science Publishers. ISBN 978-1-62417-636-4.
- ^ a b c d e f g h i j k l m n o Hutcheson JD, Setola V, Roth BL, Merryman WD (November 2011). "Serotonin receptors and heart valve disease--it was meant 2B". Pharmacol Ther. 132 (2): 146–157. doi:10.1016/j.pharmthera.2011.03.008. PMC 3179857. PMID 21440001.
- ^ a b c d e f g h i j Porter RH, Benwell KR, Lamb H, Malcolm CS, Allen NH, Revell DF, et al. (September 1999). "Functional characterization of agonists at recombinant human 5-HT2A, 5-HT2B and 5-HT2C receptors in CHO-K1 cells". Br J Pharmacol. 128 (1): 13–20. doi:10.1038/sj.bjp.0702751. PMC 1571597. PMID 10498829.
- ^ a b c d Iversen L, Gibbons S, Treble R, Setola V, Huang XP, Roth BL (January 2013). "Neurochemical profiles of some novel psychoactive substances". Eur J Pharmacol. 700 (1–3): 147–151. doi:10.1016/j.ejphar.2012.12.006. PMC 3582025. PMID 23261499.
- ^ a b Hoyer D (2019). "Serotonin receptors nomenclature". The Serotonin System. Elsevier. pp. 63–93. doi:10.1016/b978-0-12-813323-1.00004-9. ISBN 978-0-12-813323-1.
- ^ a b c Porter RH, Benwell KR, Lamb H, Malcolm CS, Allen NH, Revell DF, et al. (Sep 1999). "Functional characterization of agonists at recombinant human 5-HT2A, 5-HT2B and 5-HT2C receptors in CHO-K1 cells". British Journal of Pharmacology. 128 (1): 13–20. doi:10.1038/sj.bjp.0702751. PMC 1571597. PMID 10498829.
- ^ Kennett GA, Trail B, Bright F (Dec 1998). "Anxiolytic-like actions of BW 723C86 in the rat Vogel conflict test are 5-HT2B receptor mediated". Neuropharmacology. 37 (12): 1603–10. doi:10.1016/S0028-3908(98)00115-4. PMID 9886683. S2CID 7310462.
- ^ McCorvy JD, Wacker D, Wang S, Agegnehu B, Liu J, Lansu K, et al. (August 2018). "Structural determinants of 5-HT2B receptor activation and biased agonism". Nature Structural & Molecular Biology. 25 (9): 787–796. doi:10.1038/s41594-018-0116-7. PMC 6237183. PMID 30127358.
- ^ a b Jayakodiarachchi N, Maurer MA, Schultz DC, Dodd CJ, Thompson Gray A, Cho HP, et al. (January 2024). "Evaluation of the Indazole Analogs of 5-MeO-DMT and Related Tryptamines as Serotonin Receptor 2 Agonists". ACS Medicinal Chemistry Letters. 15 (2): 302–309. doi:10.1021/acsmedchemlett.3c00566. PMC 10860182. PMID 38352850.
{{cite journal}}: CS1 maint: overridden setting (link) - ^ a b c d e f g Rickli A, Luethi D, Reinisch J, Buchy D, Hoener MC, Liechti ME (December 2015). "Receptor interaction profiles of novel N-2-methoxybenzyl (NBOMe) derivatives of 2,5-dimethoxy-substituted phenethylamines (2C drugs)" (PDF). Neuropharmacology. 99: 546–553. doi:10.1016/j.neuropharm.2015.08.034. PMID 26318099.
- ^ a b Barcelo B, Gomila I (2017). "Pharmacology and Literature Review Based on Related Death and Non-Fatal Case Reports of the Benzofurans and Benzodifurans Designer Drugs". Curr Pharm Des. 23 (36): 5523–5529. doi:10.2174/1381612823666170714155140. PMID 28714411.
- ^ a b c Shimshoni JA, Winkler I, Golan E, Nutt D (January 2017). "Neurochemical binding profiles of novel indole and benzofuran MDMA analogues". Naunyn Schmiedebergs Arch Pharmacol. 390 (1): 15–24. doi:10.1007/s00210-016-1297-4. hdl:10044/1/43622. PMID 27650729.
- ^ May JA, Sharif NA, Chen HH, Liao JC, Kelly CR, Glennon RA, et al. (January 2009). "Pharmacological properties and discriminative stimulus effects of a novel and selective 5-HT2 receptor agonist AL-38022A [(S)-2-(8,9-dihydro-7H-pyrano[2,3-g]indazol-1-yl)-1-methylethylamine]". Pharmacol Biochem Behav. 91 (3): 307–314. doi:10.1016/j.pbb.2008.07.015. PMC 3763814. PMID 18718483.
- ^ a b c Rothman RB, Baumann MH (2006). "Therapeutic potential of monoamine transporter substrates". Curr Top Med Chem. 6 (17): 1845–1859. doi:10.2174/156802606778249766. PMID 17017961.
- ^ Rothman RB, Baumann MH (April 2002). "Serotonin releasing agents. Neurochemical, therapeutic and adverse effects". Pharmacol Biochem Behav. 71 (4): 825–836. doi:10.1016/s0091-3057(01)00669-4. PMID 11888573.
- ^ Cunningham MJ, Bock HA, Serrano IC, Bechand B, Vidyadhara DJ, Bonniwell EM, et al. (January 2023). "Pharmacological Mechanism of the Non-hallucinogenic 5-HT2A Agonist Ariadne and Analogs". ACS Chemical Neuroscience. 14 (1): 119–135. doi:10.1021/acschemneuro.2c00597. PMC 10147382. PMID 36521179.
- ^ Hoyer D (November 2020). "Targeting the 5-HT system: Potential side effects". Neuropharmacology. 179 108233. doi:10.1016/j.neuropharm.2020.108233. PMID 32805212.
- ^ Isberg V, Paine J, Leth-Petersen S, Kristensen JL, Gloriam DE (2013). "Structure-activity relationships of constrained phenylethylamine ligands for the serotonin 5-HT2 receptors". PLOS ONE. 8 (11) e78515. Bibcode:2013PLoSO...878515I. doi:10.1371/journal.pone.0078515. PMC 3820707. PMID 24244317.
- ^ Parker MA, Marona-Lewicka D, Lucaites VL, Nelson DL, Nichols DE (December 1998). "A novel (benzodifuranyl)aminoalkane with extremely potent activity at the 5-HT2A receptor". J Med Chem. 41 (26): 5148–5149. doi:10.1021/jm9803525. PMID 9857084.
- ^ Samson SL, Ezzat S (June 2014). "AACE/ACE Disease State Clinical Review: Dopamine Agonists for Hyperprolactinemia and the Risk of Cardiac Valve Disease". Endocr Pract. 20 (6): 608–616. doi:10.4158/EP14148.RA. PMID 24969114.
Bromocriptine was first described as a 5HT-2BR antagonist (22) but was subsequently found to have partial agonist properties (23,24). [...] Regarding bromocriptine, there was no increased incidence of valve regurgitation in PD patients on bromocriptine in the population-based study of Schade et al (33), despite the significant findings for cabergoline and pergolide. However, there is a case report implicating high doses of bromocriptine as the cause of triple valve disease in a PD patient (37), and 1 study reported a significant correlation between cumulative dose of bromocriptine and the risk of valve regurgitation in a PD cohort (38). Other publications have reported fibrotic events, including retroperitoneal, pericardial and pleural fibrosis, in PD patients on high-dose bromocriptine (39-43). [...] Although there seems to be a lower risk of valvulopathy with bromocriptine, as a partial 5HT-2BR agonist, there still appears to be some risk with high-dose bromocriptine in PD patients.
- ^ a b c d e f g Cavero I, Guillon JM (2014). "Safety Pharmacology assessment of drugs with biased 5-HT(2B) receptor agonism mediating cardiac valvulopathy". J Pharmacol Toxicol Methods. 69 (2): 150–161. doi:10.1016/j.vascn.2013.12.004. PMID 24361689.
- ^ Varty GB, Canal CE, Mueller TA, Hartsel JA, Tyagi R, Avery K, et al. (April 2024). "Synthesis and Structure-Activity Relationships of 2,5-Dimethoxy-4-Substituted Phenethylamines and the Discovery of CYB210010: A Potent, Orally Bioavailable and Long-Acting Serotonin 5-HT2 Receptor Agonist". Journal of Medicinal Chemistry. 67 (8): 6144–6188. doi:10.1021/acs.jmedchem.3c01961. PMID 38593423.
- ^ Palfreyman M, Varty G, Canal C, Hartsel J, Tyagi R, Avery K, et al. (December 2023). "ACNP 62nd Annual Meeting: Poster Abstracts P251 – P500: P405. Discovery and Preclinical Characterization of the Phenylalkylamine, CYB210010, a Potent and Long-Acting Serotonin 5-HT2A Receptor Agonist". Neuropsychopharmacology. 48 (Suppl 1): 211–354 (299–299. doi:10.1038/s41386-023-01756-4. PMC 10729596. PMID 38040810.
- ^ a b c d e f g h i j Rothman RB, Baumann MH (May 2009). "Serotonergic drugs and valvular heart disease". Expert Opin Drug Saf. 8 (3): 317–329. doi:10.1517/14740330902931524. PMC 2695569. PMID 19505264.
- ^ Nistala P (2018). 5-HT2B Receptor-mediated Cardiac Valvulopathy (Master of Science thesis). Virginia Commonwealth University. doi:10.25772/0YNR-6690 – via VCU Theses and Dissertations.
- ^ Schaerlinger B, Hickel P, Etienne N, Guesnier L, Maroteaux L (September 2003). "Agonist actions of dihydroergotamine at 5-HT2B and 5-HT2C receptors and their possible relevance to antimigraine efficacy". Br J Pharmacol. 140 (2): 277–284. doi:10.1038/sj.bjp.0705437. PMC 1574033. PMID 12970106.
- ^ a b Luethi D, Rudin D, Hoener MC, Liechti ME (2022). "Monoamine Receptor and Transporter Interaction Profiles of 4-Alkyl-Substituted 2,5-Dimethoxyamphetamines". The FASEB Journal. 36 (S1) fasebj.2022.36.S1.R2691. doi:10.1096/fasebj.2022.36.S1.R2691. ISSN 0892-6638.
- ^ Huang XP, Setola V, Yadav PN, Allen JA, Rogan SC, Hanson BJ, et al. (Oct 2009). "Parallel functional activity profiling reveals valvulopathogens are potent 5-hydroxytryptamine(2B) receptor agonists: implications for drug safety assessment". Molecular Pharmacology. 76 (4): 710–22. doi:10.1124/mol.109.058057. PMC 2769050. PMID 19570945.
- ^ a b "PDSP Ki database, University of North Carolina at Chapel Hill". Retrieved 2019-09-04.
- ^ a b c d Wsół A (December 2023). "Cardiovascular safety of psychedelic medicine: current status and future directions". Pharmacol Rep. 75 (6): 1362–1380. doi:10.1007/s43440-023-00539-4. PMC 10661823. PMID 37874530.
- ^ Brandt SD, Kavanagh PV, Twamley B, Westphal F, Elliott SP, Wallach J, et al. (February 2018). "Return of the lysergamides. Part IV: Analytical and pharmacological characterization of lysergic acid morpholide (LSM-775)". Drug Test Anal. 10 (2): 310–322. doi:10.1002/dta.2222. PMC 6230476. PMID 28585392.
- ^ a b Setola V, Hufeisen SJ, Grande-Allen KJ, Vesely I, Glennon RA, Blough B, et al. (Jun 2003). "3,4-methylenedioxymethamphetamine (MDMA, "Ecstasy") induces fenfluramine-like proliferative actions on human cardiac valvular interstitial cells in vitro". Molecular Pharmacology. 63 (6): 1223–1229. doi:10.1124/mol.63.6.1223. PMID 12761331. S2CID 839426.
- ^ Ray TS (2010). Manzoni OJ (ed.). "Psychedelics and the human receptorome". PLOS ONE. 5 (2) e9019. Bibcode:2010PLoSO...5.9019R. doi:10.1371/journal.pone.0009019. PMC 2814854. PMID 20126400.
- ^ a b c d e f g h i j k l m Knight AR, Misra A, Quirk K, Benwell K, Revell D, Kennett G, et al. (August 2004). "Pharmacological characterisation of the agonist radioligand binding site of 5-HT(2A), 5-HT(2B) and 5-HT(2C) receptors". Naunyn Schmiedebergs Arch Pharmacol. 370 (2): 114–123. doi:10.1007/s00210-004-0951-4. PMID 15322733.
- ^ Rothman RB, Blough BE, Baumann MH (January 2007). "Dual dopamine/serotonin releasers as potential medications for stimulant and alcohol addictions". AAPS J. 9 (1): E1–10. doi:10.1208/aapsj0901001. PMC 2751297. PMID 17408232.
- ^ Görnemann T, Hübner H, Gmeiner P, Horowski R, Latté KP, Flieger M, et al. (Mar 2008). "Characterization of the molecular fragment that is responsible for agonism of pergolide at serotonin 5-Hydroxytryptamine2B and 5-Hydroxytryptamine2A receptors". The Journal of Pharmacology and Experimental Therapeutics. 324 (3): 1136–45. doi:10.1124/jpet.107.133165. PMID 18096760. S2CID 24907300.
- ^ "AL-34662". Inxight Drugs. Retrieved 25 November 2024.
- ^ Luethi D, Kolaczynska KE, Docci L, Krähenbühl S, Hoener MC, Liechti ME (May 2018). "Pharmacological profile of mephedrone analogs and related new psychoactive substances" (PDF). Neuropharmacology. 134 (Pt A): 4–12. doi:10.1016/j.neuropharm.2017.07.026. PMID 28755886.
- ^ Rickli A, Kopf S, Hoener MC, Liechti ME (July 2015). "Pharmacological profile of novel psychoactive benzofurans". Br J Pharmacol. 172 (13): 3412–3425. doi:10.1111/bph.13128. PMC 4500375. PMID 25765500.
- ^ Luethi D, Kolaczynska KE, Walter M, Suzuki M, Rice KC, Blough BE, et al. (July 2019). "Metabolites of the ring-substituted stimulants MDMA, methylone and MDPV differentially affect human monoaminergic systems". J Psychopharmacol. 33 (7): 831–841. doi:10.1177/0269881119844185. PMC 8269116. PMID 31038382.
- ^ a b c d e f g h i j k l m n o Wang Q, Zhou Y, Huang J, Huang N (January 2021). "Structure, Function, and Pharmaceutical Ligands of 5-Hydroxytryptamine 2B Receptor". Pharmaceuticals (Basel). 14 (2): 76. doi:10.3390/ph14020076. PMC 7909583. PMID 33498477.
- ^ Kim M, Truss M, Pagare PP, Essandoh MA, Zhang Y, Williams DA (November 2020). "Structure activity relationship exploration of 5-hydroxy-2-(3-phenylpropyl)chromones as a unique 5-HT2B receptor antagonist scaffold". Bioorg Med Chem Lett. 30 (21) 127511. doi:10.1016/j.bmcl.2020.127511. PMID 32853682.
- ^ a b c d e f g Brea J, Castro-Palomino J, Yeste S, Cubero E, Párraga A, Domínguez E, et al. (2010). "Emerging opportunities and concerns for drug discovery at serotonin 5-HT2B receptors". Curr Top Med Chem. 10 (5): 493–503. doi:10.2174/156802610791111524. PMID 20166944.
- ^ a b Schmitz B, Ullmer C, Segelcke D, Gwarek M, Zhu XR, Lübbert H (March 2015). "BF-1--a novel selective 5-HT2B receptor antagonist blocking neurogenic dural plasma protein extravasation in guinea pigs". Eur J Pharmacol. 751: 73–80. doi:10.1016/j.ejphar.2015.01.043. PMID 25666387.
- ^ Kovács A, Gacsályi I, Wellmann J, Schmidt E, Szücs Z, Dubreuil V, et al. (2003). "Effects of EGIS-7625, a selective and competitive 5-HT2B receptor antagonist". Cardiovasc Drugs Ther. 17 (5–6): 427–434. doi:10.1023/b:card.0000015857.96371.43. PMID 15107597.
- ^ Kovács A, Gacsályi I, Wellmann J, Schmidt E, Szücs Z, Dubreuil V, et al. (2003). "Effects of EGIS-7625, a selective and competitive 5-HT2B receptor antagonist". Cardiovascular Drugs and Therapy. 17 (5–6): 427–34. doi:10.1023/B:CARD.0000015857.96371.43. PMID 15107597. S2CID 11532969.
- ^ a b Löfdahl A, Rydell-Törmänen K, Müller C, Martina Holst C, Thiman L, Ekström G, et al. (August 2016). "5-HT2B receptor antagonists attenuate myofibroblast differentiation and subsequent fibrotic responses in vitro and in vivo". Physiol Rep. 4 (15) e12873. doi:10.14814/phy2.12873. PMC 4985542. PMID 27482070.
- ^ a b c Glennon RA, Dukat M (2012). "Serotonin Receptors and Drugs Affecting Serotonergic Neurotransmission". Foye's Textbook of Medical Chemistry (PDF) (7 ed.). Baltimore: Williams and Wilkins Inc. pp. 315–337. ISBN 978-1-60913-345-0.
- ^ van Wijngaarden I, Soudijn W (1997). "5-HT2A, 5-HT2B and 5-HT2C receptor ligands". Pharmacochemistry Library. Vol. 27. Elsevier. pp. 161–197. doi:10.1016/s0165-7208(97)80013-x. ISBN 978-0-444-82041-9.
- ^ Tosh DK, Calkins MM, Ivancich MS, Bock HA, Campbell RG, Lewicki SA, et al. (November 2023). "Structure activity relationships of 5-HT2B and 5-HT2C serotonin receptor antagonists: N6, C2 and 5'-Modified (N)-methanocarba-adenosine derivatives". Eur J Med Chem. 259 115691. doi:10.1016/j.ejmech.2023.115691. PMC 10529765. PMID 37562117.
- ^ Tosh DK, Pavan M, Clark AA, Lammers J, Villano S, Marri S, et al. (November 2024). "Potent and Selective Human 5-HT2B Serotonin Receptor Antagonists: 4'-Cyano-(N)-methanocarba-adenosines by Synthetic Serendipity". J Med Chem. 67 (23): 21264–21291. doi:10.1021/acs.jmedchem.4c02174. PMC 11715225. PMID 39589936.
- ^ Acquarone E, Argyrousi EK, Arancio O, Watterson DM, Roy SM (2024). "The 5HT2b Receptor in Alzheimer's Disease: Increased Levels in Patient Brains and Antagonist Attenuation of Amyloid and Tau Induced Dysfunction". J Alzheimers Dis. 98 (4): 1349–1360. doi:10.3233/JAD-240063. PMC 11091653. PMID 38578894.
- ^ Roy SM, Acquarone E, Argyrousi EK, Zhang H, Staniszewski A, Inoue A, et al. (2025). "Optimized 5-HT2b inhibitors for neuropsychiatric syndromes with cognitive dysfunction". Alzheimer's & Dementia: Translational Research & Clinical Interventions. 11 (1) e70073. doi:10.1002/trc2.70073. PMC 11947739. PMID 40151398.
- ^ Takahashi N, Inagaki K, Taniguchi K, Sakaguchi Y, Kawamura K (2011). "The Novel 5-HT2B Receptor Antagonist, RQ-00310941, Attenuates Visceral Hypersensitivity and Abnormal Defecation in Rat Models". Gastroenterology. 140 (5): S–607. doi:10.1016/S0016-5085(11)62513-4.
- ^ "RQ 00310941". AdisInsight. 17 April 2024. Retrieved 30 November 2024.
- ^ Bonhaus DW, Flippin LA, Greenhouse RJ, Jaime S, Rocha C, Dawson M, et al. (Jul 1999). "RS-127445: a selective, high affinity, orally bioavailable 5-HT2B receptor antagonist". British Journal of Pharmacology. 127 (5): 1075–82. doi:10.1038/sj.bjp.0702632. PMC 1566110. PMID 10455251.
- ^ Forbes IT, Jones GE, Murphy OE, Holland V, Baxter GS (March 1995). "N-(1-methyl-5-indolyl)-N'-(3-methyl-5-isothiazolyl)urea: a novel, high-affinity 5-HT2B receptor antagonist". Journal of Medicinal Chemistry. 38 (6): 855–857. doi:10.1021/jm00006a001. PMID 7699699.
- ^ Reavill C, Kettle A, Holland V, Riley G, Blackburn TP (Feb 1999). "Attenuation of haloperidol-induced catalepsy by a 5-HT2C receptor antagonist". British Journal of Pharmacology. 126 (3): 572–4. doi:10.1038/sj.bjp.0702350. PMC 1565856. PMID 10188965.
- ^ a b c Bender AM, Parr LC, Livingston WB, Lindsley CW, Merryman WD (August 2023). "2B Determined: The Future of the Serotonin Receptor 2B in Drug Discovery". J Med Chem. 66 (16): 11027–11039. doi:10.1021/acs.jmedchem.3c01178. PMC 11073569. PMID 37584406.
- ^ a b Valentine MS, Bender AM, Shay S, Paffenroth KC, Gladson S, Dickerson JW, et al. (October 2023). "Development of a Peripherally Restricted 5-HT2B Partial Agonist for Treatment of Pulmonary Arterial Hypertension". JACC Basic Transl Sci. 8 (10): 1379–1388. doi:10.1016/j.jacbts.2023.06.014. PMC 10714182. PMID 38094686.
- ^ Lewis V, Bonniwell EM, Lanham JK, Ghaffari A, Sheshbaradaran H, Cao AB, et al. (March 2023). "A non-hallucinogenic LSD analog with therapeutic potential for mood disorders". Cell Rep. 42 (3) 112203. doi:10.1016/j.celrep.2023.112203. PMC 10112881. PMID 36884348.
- ^ Canal CE, Morgan D, Felsing D, Kondabolu K, Rowland NE, Robertson KL, et al. (May 2014). "A novel aminotetralin-type serotonin (5-HT) 2C receptor-specific agonist and 5-HT2A competitive antagonist/5-HT2B inverse agonist with preclinical efficacy for psychoses". J Pharmacol Exp Ther. 349 (2): 310–318. doi:10.1124/jpet.113.212373. PMC 3989798. PMID 24563531.
- ^ Millan MJ, Gobert A, Lejeune F, Dekeyne A, Newman-Tancredi A, Pasteau V, et al. (Sep 2003). "The novel melatonin agonist agomelatine (S20098) is an antagonist at 5-hydroxytryptamine2C receptors, blockade of which enhances the activity of frontocortical dopaminergic and adrenergic pathways". The Journal of Pharmacology and Experimental Therapeutics. 306 (3): 954–64. doi:10.1124/jpet.103.051797. PMID 12750432. S2CID 18753440.
- ^ "Delving into the Latest Updates on AMAP-102 with Synapse". Synapse. 21 November 2024. Retrieved 30 November 2024.
- ^ Vasilkevich A, Duan J, Lovera A, McCorvy J, Pedersen JT (October 2024). Novel 5-HT2A/2C mixed and partial agonist and its efficacy in preclinical pain models (PDF). Society for Neuroscience 2024 Annual Meeting, Chicago, October 5–9.
- ^ Garnock-Jones KP (June 2017). "Cariprazine: A Review in Schizophrenia". CNS Drugs. 31 (6): 513–525. doi:10.1007/s40263-017-0442-z. PMID 28560619. S2CID 4392274.
- ^ a b Cameron LP, Tombari RJ, Lu J, Pell AJ, Hurley ZQ, Ehinger Y, et al. (January 2021). "A non-hallucinogenic psychedelic analogue with therapeutic potential". Nature. 589 (7842): 474–479. Bibcode:2021Natur.589..474C. doi:10.1038/s41586-020-3008-z. PMC 7874389. PMID 33299186.
- ^ Davis R, Dutheil SS, Zhang L, Lehmann E, Awadallah N, Yao W, et al. (December 2023). "ACNP 62nd Annual Meeting: Poster Abstracts P251 - P500: P358. Discovery and Characterization of ITI-1549, a Novel Non-Hallucinogenic Psychedelic for the Treatment of Neuropsychiatric Disorders". Neuropsychopharmacology. 48 (Suppl 1): 211–354 (272–273). doi:10.1038/s41386-023-01756-4. PMC 10729596. PMID 38040810.
- ^ "Küleon Bioscience Announces Scientific Breakthrough with First Known Trifunctional 5-HT2C Receptor Agonist that is also a Full Antagonist of the 5-HT2A and 5-HT2B Receptors, Creating an Exciting Lead for Multiple Neuropsychiatric Illnesses". BioSpace. 5 October 2023. Retrieved 30 November 2024.
- ^ Hofmann C, Penner U, Dorow R, Pertz HH, Jähnichen S, Horowski R, et al. (2006). "Lisuride, a dopamine receptor agonist with 5-HT2B receptor antagonist properties: absence of cardiac valvulopathy adverse drug reaction reports supports the concept of a crucial role for 5-HT2B receptor agonism in cardiac valvular fibrosis". Clinical Neuropharmacology. 29 (2): 80–6. doi:10.1097/00002826-200603000-00005. PMID 16614540. S2CID 33849447.
- ^ Egan CT, Herrick-Davis K, Miller K, Glennon RA, Teitler M (Apr 1998). "Agonist activity of LSD and lisuride at cloned 5HT2A and 5HT2C receptors". Psychopharmacology. 136 (4): 409–14. doi:10.1007/s002130050585. PMID 9600588. S2CID 3021798.
- ^ "Metadoxine extended release (MDX) for adult ADHD". Alcobra Ltd. 2014. Archived from the original on 2019-02-13. Retrieved 2014-05-07.
- ^ Robb AS, Schwabe S, Ceresoli-Borroni G, Nasser A, Yu C, Marcus R, et al. (March 2019). "A proposed anti-maladaptive aggression agent classification: improving our approach to treating impulsive aggression". Postgrad Med. 131 (2): 129–137. doi:10.1080/00325481.2019.1574401. PMID 30678534.
- ^ Yu C, Gopalakrishnan G (2018). "In vitro pharmacological characterization of SPN-810M (molindone)". J Exp Pharmacol. 10: 65–73. doi:10.2147/JEP.S180777. PMC 6254985. PMID 30538587.
- ^ "promethazine | Activity data visualisation tool | IUPHAR/BPS Guide to PHARMACOLOGY". www.guidetopharmacology.org. Retrieved 2019-02-28.
- ^ Kennett GA, Wood MD, Bright F, Cilia J, Piper DC, Gager T, et al. (February 1996). "In vitro and in vivo profile of SB 206553, a potent 5-HT2C/5-HT2B receptor antagonist with anxiolytic-like properties". Br J Pharmacol. 117 (3): 427–434. doi:10.1111/j.1476-5381.1996.tb15208.x. PMC 1909304. PMID 8821530.
- ^ Dunlop J, Lock T, Jow B, Sitzia F, Grauer S, Jow F, et al. (Mar 2009). "Old and new pharmacology: positive allosteric modulation of the alpha7 nicotinic acetylcholine receptor by the 5-hydroxytryptamine(2B/C) receptor antagonist SB-206553 (3,5-dihydro-5-methyl-N-3-pyridinylbenzo[1,2-b:4,5-b']di pyrrole-1(2H)-carboxamide)". The Journal of Pharmacology and Experimental Therapeutics. 328 (3): 766–776. doi:10.1124/jpet.108.146514. PMID 19050173. S2CID 206500076.
- ^ Beattie DT, Smith JA, Marquess D, Vickery RG, Armstrong SR, Pulido-Rios T, et al. (Nov 2004). "The 5-HT4 receptor agonist, tegaserod, is a potent 5-HT2B receptor antagonist in vitro and in vivo". British Journal of Pharmacology. 143 (5): 549–560. doi:10.1038/sj.bjp.0705929. PMC 1575425. PMID 15466450.
- ^ McCullough JL, Armstrong SR, Hegde SS, Beattie DT (April 2006). "The 5-HT2B antagonist and 5-HT4 agonist activities of tegaserod in the anaesthetized rat". Pharmacol Res. 53 (4): 353–358. doi:10.1016/j.phrs.2006.01.003. PMID 16495076.
- ^ Dunlop J, Watts SW, Barrett JE, Coupet J, Harrison B, Mazandarani H, et al. (June 2011). "Characterization of vabicaserin (SCA-136), a selective 5-hydroxytryptamine 2C receptor agonist". J Pharmacol Exp Ther. 337 (3): 673–680. doi:10.1124/jpet.111.179572. PMID 21402690.
- ^ Yu C, Garcia-Olivares J, Candler S, Schwabe S, Maletic V (2020). "New Insights into the Mechanism of Action of Viloxazine: Serotonin and Norepinephrine Modulating Properties". Journal of Experimental Pharmacology. 12: 285–300. doi:10.2147/JEP.S256586. PMC 7473988. PMID 32943948.
- ^ Garcia-Olivares J, Yegla B, Earnest J, Maletic V, Yu C (2023). "Characterization of Viloxazine Effects on Cortical Serotonin Neurotransmission at Doses Relevant for ADHD Treatment". CNS Spectrums. 28 (2): 235. doi:10.1017/S1092852923001633. ISSN 1092-8529.
- ^ Watson J, Brough S, Coldwell MC, Gager T, Ho M, Hunter AJ, et al. (December 1998). "Functional effects of the muscarinic receptor agonist, xanomeline, at 5-HT1 and 5-HT2 receptors". Br J Pharmacol. 125 (7): 1413–1420. doi:10.1038/sj.bjp.0702201. PMC 1565721. PMID 9884068.
- ^ Odagaki Y, Kinoshita M, Ota T (September 2016). "Comparative analysis of pharmacological properties of xanomeline and N-desmethylclozapine in rat brain membranes". J Psychopharmacol. 30 (9): 896–912. doi:10.1177/0269881116658989. PMID 27464743.
- ^ Rasmussen K, Engel S, Chytil M, Koenig A, Meyer R, Rus M, et al. (December 2023). "ACNP 62nd Annual Meeting: Poster Abstracts P251 - P500: P361. Preclinical Pharmacology of DLX-001, a Novel Non-Hallucinogenic Neuroplastogen With the Potential for Treating Neuropsychiatric Diseases". Neuropsychopharmacology. 48 (Suppl 1): 211–354 (274–275). doi:10.1038/s41386-023-01756-4. PMC 10729596. PMID 38040810.
- ^ "Delving into the Latest Updates on AM-1030 with Synapse". Synapse. 21 November 2024. Retrieved 30 November 2024.
- ^ "USA Life Sciences Database". USA Life Sciences Database. Retrieved 19 May 2025.
- ^ "Our Pipeline - Transneural Therapeutics". Transneural Therapeutics. 24 April 2025. Retrieved 19 May 2025.
- ^ Tosh DK, Pavan M, Clark AA, Lammers J, Villano S, Marri S, et al. (2024). "Potent and Selective Human 5-HT2B Serotonin Receptor Antagonists: 4'-Cyano-(N)-methanocarba-adenosines by Synthetic Serendipity". J Med Chem. 67 (23): 21264–21291. doi:10.1021/acs.jmedchem.4c02174. PMC 11715225. PMID 39589936.
- ^ Rashid M, Manivet P, Nishio H, Pratuangdejkul J, Rajab M, Ishiguro M, et al. (May 2003). "Identification of the binding sites and selectivity of sarpogrelate, a novel 5-HT2 antagonist, to human 5-HT2A, 5-HT2B and 5-HT2C receptor subtypes by molecular modeling". Life Sci. 73 (2): 193–207. doi:10.1016/s0024-3205(03)00227-3. PMID 12738034.
- ^ Muntasir HA, Hossain M, Bhuiyan MA, Komiyama T, Nakamura T, Ozaki M, et al. (July 2007). "Identification of a key amino acid of the human 5-HT(2B) serotonin receptor important for sarpogrelate binding". J Pharmacol Sci. 104 (3): 274–277. doi:10.1254/jphs.sc0060241. PMID 17609583.
- ^ a b Bender AM, Valentine MS, Bauer JA, Days E, Lindsley CW, Merryman WD (April 2023). "Identification of Potent, Selective, and Peripherally Restricted Serotonin Receptor 2B Antagonists from a High-Throughput Screen". Assay Drug Dev Technol. 21 (3): 89–96. doi:10.1089/adt.2022.116. PMC 10122230. PMID 36930852.
- ^ Yoon J, Choi WI, Lee WH, Lee GB, Choi BW, Kim P, et al. (March 2025). "Synthesis and Biological Evaluation of Peripheral 5HT2B Antagonists for Liver Fibrosis". J Med Chem. 68 (6): 6493–6506. doi:10.1021/acs.jmedchem.4c03003. PMID 40048549.
- ^ Chaouloff F, Layeillon C, Baudrie V (January 1993). "5-HT1C/5-HT2 receptor blockade prevents 1-(2,5-dimethoxy-4-iodophenyl)2-aminopropane-, but not stress-induced increases in brain tryptophan". European Journal of Pharmacology. 231 (1): 77–82. doi:10.1016/0014-2999(93)90686-c. PMID 8095238.
- ^ Glennon RA, Westkaemper RB (1992). "Serotonin Receptors, 5-th Ligands and Receptor Modeling". Pharmacochemistry Library. Vol. 18. Elsevier. pp. 185–207. doi:10.1016/b978-0-444-88931-7.50017-7. ISBN 978-0-444-88931-7.
Various polycyclic agents such as butaclamol, mianserin, cyproheptadine, pizotyline bind at 5-HT2 receptors with high affinity. These agents are not selective and bind with comparable affinty either at other populations of 5-HT receptors or at other neurotransmitter receptors. Other, structurally unique agents have also been investigated including cinanserin and xylamidine. The latter compound has seen application as a peripheral 5-HT2 antagonist in that it does not readily penetrate the blood-brain barrier; however, xylamidine binds equally well at 5-HTIC and 5-HT2 receptors. See references 3 and 5 for additional information on these types of agents.
- ^ Dave KD, Quinn JL, Harvey JA, Aloyo VJ (March 2004). "Role of central 5-HT2 receptors in mediating head bobs and body shakes in the rabbit". Pharmacol Biochem Behav. 77 (3): 623–629. doi:10.1016/j.pbb.2003.12.017. PMID 15006475.
Systemic administration of the peripheral 5-HT2A/2C antagonist xylamidine [...] First, systemic injections of the peripherally acting 5-HT2A/2C receptor antagonist xylamidine were employed to study its effects on head bobs and body shakes produced by systemic injections of DOI.
- ^ Poissonnet G, Parmentier JG, Boutin JA, Goldstein S (Mar 2004). "The emergence of selective 5-HT 2B antagonists structures, activities and potential therapeutic applications". Mini Reviews in Medicinal Chemistry. 4 (3): 325–30. doi:10.2174/1389557043487312. PMID 15032678.
- ^ Shyu KG (Jan 2009). "Serotonin 5-HT2B receptor in cardiac fibroblast contributes to cardiac hypertrophy: a new therapeutic target for heart failure?". Circulation Research. 104 (1): 1–3. doi:10.1161/CIRCRESAHA.108.191122. PMID 19118279. S2CID 41931843.
- ^ Moss N, Choi Y, Cogan D, Flegg A, Kahrs A, Loke P, et al. (Apr 2009). "A new class of 5-HT2B antagonists possesses favorable potency, selectivity, and rat pharmacokinetic properties". Bioorganic & Medicinal Chemistry Letters. 19 (8): 2206–10. doi:10.1016/j.bmcl.2009.02.126. PMID 19307114.
- ^ Ebrahimkhani MR, Oakley F, Murphy LB, Mann J, Moles A, Perugorria MJ, et al. (Dec 2011). "Stimulating healthy tissue regeneration by targeting the 5-HT2B receptor in chronic liver disease". Nature Medicine. 17 (12): 1668–73. doi:10.1038/nm.2490. PMC 3428919. PMID 22120177.
Further reading
[edit]- Raymond JR, Mukhin YV, Gelasco A, Turner J, Collinsworth G, Gettys TW, et al. (2002). "Multiplicity of mechanisms of serotonin receptor signal transduction". Pharmacology & Therapeutics. 92 (2–3): 179–212. doi:10.1016/S0163-7258(01)00169-3. PMID 11916537.
- Choi DS, Birraux G, Launay JM, Maroteaux L (Oct 1994). "The human serotonin 5-HT2B receptor: pharmacological link between 5-HT2 and 5-HT1D receptors". FEBS Letters. 352 (3): 393–9. Bibcode:1994FEBSL.352..393C. doi:10.1016/0014-5793(94)00968-6. PMID 7926008. S2CID 26931598.
- Kursar JD, Nelson DL, Wainscott DB, Baez M (Aug 1994). "Molecular cloning, functional expression, and mRNA tissue distribution of the human 5-hydroxytryptamine2B receptor". Molecular Pharmacology. 46 (2): 227–34. doi:10.1016/S0026-895X(25)09676-2. PMID 8078486.
- Schmuck K, Ullmer C, Engels P, Lübbert H (Mar 1994). "Cloning and functional characterization of the human 5-HT2B serotonin receptor". FEBS Letters. 342 (1): 85–90. Bibcode:1994FEBSL.342...85S. doi:10.1016/0014-5793(94)80590-3. PMID 8143856. S2CID 11232259.
- Launay JM, Birraux G, Bondoux D, Callebert J, Choi DS, Loric S, et al. (Feb 1996). "Ras involvement in signal transduction by the serotonin 5-HT2B receptor". The Journal of Biological Chemistry. 271 (6): 3141–7. doi:10.1074/jbc.271.6.3141. PMID 8621713.
- Le Coniat M, Choi DS, Maroteaux L, Launay JM, Berger R (Feb 1996). "The 5-HT2B receptor gene maps to 2q36.3-2q37.1" (PDF). Genomics. 32 (1): 172–3. doi:10.1006/geno.1996.0101. PMID 8786115.
- Kim SJ, Veenstra-VanderWeele J, Hanna GL, Gonen D, Leventhal BL, Cook EH (Feb 2000). "Mutation screening of human 5-HT(2B)receptor gene in early-onset obsessive-compulsive disorder". Molecular and Cellular Probes. 14 (1): 47–52. doi:10.1006/mcpr.1999.0281. PMID 10722792.
- Manivet P, Mouillet-Richard S, Callebert J, Nebigil CG, Maroteaux L, Hosoda S, et al. (Mar 2000). "PDZ-dependent activation of nitric-oxide synthases by the serotonin 2B receptor". The Journal of Biological Chemistry. 275 (13): 9324–31. doi:10.1074/jbc.275.13.9324. PMID 10734074.
- Becamel C, Figge A, Poliak S, Dumuis A, Peles E, Bockaert J, et al. (Apr 2001). "Interaction of serotonin 5-hydroxytryptamine type 2C receptors with PDZ10 of the multi-PDZ domain protein MUPP1". The Journal of Biological Chemistry. 276 (16): 12974–82. doi:10.1074/jbc.M008089200. PMID 11150294.
- Manivet P, Schneider B, Smith JC, Choi DS, Maroteaux L, Kellermann O, et al. (May 2002). "The serotonin binding site of human and murine 5-HT2B receptors: molecular modeling and site-directed mutagenesis". The Journal of Biological Chemistry. 277 (19): 17170–8. doi:10.1074/jbc.M200195200. PMID 11859080.
- Borman RA, Tilford NS, Harmer DW, Day N, Ellis ES, Sheldrick RL, et al. (Mar 2002). "5-HT(2B) receptors play a key role in mediating the excitatory effects of 5-HT in human colon in vitro". British Journal of Pharmacology. 135 (5): 1144–51. doi:10.1038/sj.bjp.0704571. PMC 1573235. PMID 11877320.
- Matsuda A, Suzuki Y, Honda G, Muramatsu S, Matsuzaki O, Nagano Y, et al. (May 2003). "Large-scale identification and characterization of human genes that activate NF-kappaB and MAPK signaling pathways". Oncogene. 22 (21): 3307–18. doi:10.1038/sj.onc.1206406. PMID 12761501. S2CID 38880905.
- Slominski A, Pisarchik A, Zbytek B, Tobin DJ, Kauser S, Wortsman J (Jul 2003). "Functional activity of serotoninergic and melatoninergic systems expressed in the skin". Journal of Cellular Physiology. 196 (1): 144–53. doi:10.1002/jcp.10287. PMID 12767050. S2CID 24534729.
- Lin Z, Walther D, Yu XY, Drgon T, Uhl GR (Dec 2004). "The human serotonin receptor 2B: coding region polymorphisms and association with vulnerability to illegal drug abuse". Pharmacogenetics. 14 (12): 805–11. doi:10.1097/00008571-200412000-00003. PMID 15608559.
External links
[edit]- "5-HT2B". IUPHAR Database of Receptors and Ion Channels. International Union of Basic and Clinical Pharmacology. Archived from the original on 2017-02-02. Retrieved 2008-11-25.
- Human HTR2B genome location and HTR2B gene details page in the UCSC Genome Browser.
- Overview of all the structural information available in the PDB for UniProt: P41595 (5-hydroxytryptamine receptor 2B) at the PDBe-KB.
This article incorporates text from the United States National Library of Medicine, which is in the public domain.
5-HT2B receptor
View on GrokipediaGenetics and molecular structure
Gene characteristics
The HTR2B gene, which encodes the 5-HT2B receptor, is located on the long arm of human chromosome 2 at the cytogenetic band 2q37.1, spanning genomic positions 231,108,230 to 231,125,042 on the reverse strand in the GRCh38.p14 assembly.[4][5][2] The gene comprises 4 exons, with the canonical transcript (ENST00000258400.4) producing an mRNA of 2,170 nucleotides that encodes a 481-amino acid protein precursor.[6][7] Alternative splicing yields additional transcripts, though the canonical isoform predominates in most tissues. Evolutionary conservation of HTR2B is evident across mammals, with the human protein sharing approximately 82% sequence identity with the mouse ortholog and 79% with the rat ortholog, reflecting conserved functional domains despite species-specific variations.[8] A notable genetic variant is the Q20* stop codon mutation (c.58C>T), which truncates the protein and has been associated with severe impulsivity and alcohol-related risk behaviors, particularly in Finnish populations where it reaches a minor allele frequency of about 2%.[9][10] Transcriptional regulation of HTR2B occurs through promoter elements approximately 1.5 kb upstream of the transcription start site, which contain binding sites responsive to transcription factors including Sp1, which activates expression in microglial cells, and nuclear factor I (NFI), which positively regulates transcription in uveal melanoma cells.[11][12]Protein structure
The 5-HT2B receptor belongs to the rhodopsin-like subfamily (family A) of G protein-coupled receptors (GPCRs), which are characterized by a conserved architecture consisting of seven transmembrane α-helices (TM1–TM7) connected by three extracellular loops (ECL1–ECL3) and three intracellular loops (ICL1–ICL3), with an extracellular N-terminus and an intracellular C-terminus.[13] This topology positions the orthosteric ligand-binding site within the transmembrane bundle, accessible from the extracellular space.[14] The first high-resolution structure of the 5-HT2B receptor was obtained in 2013 via X-ray crystallography of a thermostabilized chimeric construct bound to the agonist ergotamine, resolved at 2.7 Å (PDB ID: 4IB4).[15] In this active-like conformation, the orthosteric binding pocket is a narrow cavity formed by residues from TM3, TM5, TM6, and the second extracellular loop (ECL2), with ergotamine's ergoline core engaging hydrophobic interactions and its basic amine forming a salt bridge with the conserved Asp3.32 (Asp129) in TM3.[16] Key structural motifs include the DRY sequence (Asp-Arg-Tyr) at the TM3–ICL2 junction, which stabilizes the inactive state through an ionic lock but rearranges upon activation to facilitate G protein coupling, and the conserved Asp3.32 in TM3, essential for coordinating the positively charged amine of endogenous ligands like serotonin.[17][14] Recent cryo-electron microscopy (cryo-EM) structures, determined in 2022, have captured the 5-HT2B receptor in complex with lysergic acid diethylamide (LSD) in transducer-free (2.7 Å), Gq-coupled (2.9 Å), and β-arrestin-1-coupled (3.3 Å) states (PDB IDs: 7SRQ, 7SRR, 7SRS), revealing conformational shifts that underlie biased signaling, including outward movement of TM6 and rearrangements in ICL2 that accommodate different transducers.[18] These structures highlight ligand-specific pocket expansions and intracellular rearrangements promoting biased agonism towards Gq and β-arrestin pathways.[19] Post-translational modifications of the 5-HT2B receptor include N-linked glycosylation, with consensus sites in the N-terminus (e.g., Asn7) and ECL2 that influence receptor trafficking and membrane expression; glycosylation at ECL2 has been resolved in structural studies and contributes to stabilizing extracellular domains.[20][21]Tissue distribution
Central nervous system expression
The 5-HT2B receptor is expressed in various regions of the central nervous system, with notable levels in key brain areas involved in emotion, cognition, and motor control. High mRNA and protein expression has been reported in the frontal cortex and basal ganglia, while moderate expression occurs in the hypothalamus; lower levels are observed in the cerebellum.[22][23] In the hippocampus, expression is moderate, contributing to its potential role in limbic functions.[22] At the cellular level, the 5-HT2B receptor is predominantly localized to neurons, including subpopulations of serotonergic neurons in the dorsal raphe nuclei and dopaminergic neurons in the mesoaccumbens pathway.[24] It is also expressed on microglia, the primary immune cells of the brain, where it influences neuroinflammatory responses.[25] Immunohistochemical studies confirm its distribution on both presynaptic and postsynaptic sites in cortical and striatal neurons, supporting bidirectional modulation of neurotransmission.[26] Quantitative assessments using reverse transcription polymerase chain reaction (RT-PCR) indicate that 5-HT2B mRNA levels are substantially higher in the cerebral cortex compared to the striatum, with fold differences ranging from 5- to 10-fold in rodent models under baseline conditions.[27] These patterns highlight region-specific roles in serotonergic signaling. During development, 5-HT2B receptor expression is upregulated in the early embryonic brain, peaking around embryonic days 8-9 in mice, particularly in neural structures including the midbrain raphe nuclei that give rise to serotonergic projections.[27][20] This temporal profile suggests involvement in neurogenesis and circuit formation.Peripheral tissue expression
The 5-HT2B receptor exhibits prominent expression in several peripheral tissues, particularly within the cardiovascular system, where it is found in valvular interstitial cells of heart valves and the endothelium of the pulmonary artery. High expression is also observed in the uterus, trachea, small intestine, ovaries, and other reproductive and respiratory tissues. Radioligand binding assays quantify receptor density in human cardiac valves at approximately 28.8 fmol/mg protein across aortic, mitral, tricuspid, and pulmonary valves.[28][3] In the gastrointestinal tract, the receptor is expressed in smooth muscle cells, with notable levels in the colon.[3] Hepatic expression occurs primarily in hepatocytes and hepatic stellate cells, contributing to its role in liver physiology.[29] mRNA distribution studies via RT-PCR and RNA-seq reveal high levels of 5-HT2B expression in human uterus, small intestine, trachea, liver, heart, and ovaries, with moderate levels in kidney, lung, pancreas, and spleen; protein confirmation via Western blot supports these patterns in analogous rodent tissues like stomach and heart.[1][7][30] Expression is also evident in immune-associated cells, with elevated levels on fibroblasts and myofibroblasts, especially in fibrotic contexts such as lung and dermal tissues.[3] These cells show receptor presence via immunohistochemical and mRNA analyses in conditions like idiopathic pulmonary fibrosis and systemic sclerosis. Species differences influence peripheral expression profiles: in humans, 5-HT2B mRNA is abundant in uterus, small intestine, and trachea among others, whereas in rodents, it predominates in the fundic stomach, affecting the suitability of translational models for peripheral receptor studies.[31] This human-rodent disparity highlights broader peripheral distribution in humans compared to the more restricted rodent pattern.[32]Function and signaling
Signal transduction mechanisms
The 5-HT2B receptor, a G protein-coupled receptor (GPCR), primarily couples to Gq/11 proteins upon activation by serotonin (5-HT), initiating a canonical signaling cascade. This coupling activates phospholipase C-β (PLC-β), which hydrolyzes phosphatidylinositol 4,5-bisphosphate (PIP2) into inositol 1,4,5-trisphosphate (IP3) and diacylglycerol (DAG). IP3 mobilizes intracellular calcium stores, while DAG activates protein kinase C (PKC), amplifying downstream effects such as gene expression and cellular proliferation.[33][18] In addition to Gq/11-mediated pathways, the 5-HT2B receptor engages β-arrestin recruitment, which scaffolds and activates the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) pathway, promoting cell proliferation and differentiation independently of G protein signaling.[18][34] Receptor desensitization occurs through phosphorylation of the C-terminal tail by G protein-coupled receptor kinases (GRKs), particularly GRK2, and PKC, which uncouples the receptor from Gq/11 and facilitates β-arrestin binding. This phosphorylation promotes clathrin-mediated internalization, terminating signaling and enabling receptor recycling or degradation.[18][20]Physiological roles
The 5-HT2B receptor contributes to cardiovascular homeostasis, particularly in the maintenance of mitral valve integrity. In valvular interstitial cells, activation of this receptor supports cellular responses that preserve tissue structure under hemodynamic stress, ensuring proper valve function without excessive remodeling.[35] Additionally, the receptor modulates pulmonary vasoconstriction, where serotonin signaling through 5-HT2B facilitates acute responses to hypoxia in pulmonary artery smooth muscle cells, aiding in the regulation of pulmonary vascular tone during normal physiological conditions.[36] In the gastrointestinal tract, the 5-HT2B receptor mediates excitatory effects on smooth muscle, promoting colonic motility through contraction and coordination of peristaltic activity. This role is evident in human colon preparations, where receptor activation enhances serotonin-induced contractions that support digestive transit.[37] Within the central nervous system, the 5-HT2B receptor modulates dopamine release in the nucleus accumbens and striatum, influencing reward processing and motor control.[38] It also contributes to pain perception, with activation mediating mechanical hyperalgesia through regulation of transient receptor potential vanilloid 1 in sensory neurons.[39] Genetic variants in the HTR2B gene, such as a stop codon polymorphism, are associated with increased impulsivity, particularly in the context of alcohol consumption, as demonstrated in human and mouse studies.[9] Beyond these systems, the 5-HT2B receptor promotes fibroblast proliferation during wound healing, where it enhances cell migration and extracellular matrix remodeling to support tissue repair. In injury models, serotonin release activates the receptor on fibroblasts, driving their expansion without leading to fibrosis in controlled physiological contexts.[40] In liver regeneration following partial hepatectomy, the receptor modulates hepatocyte proliferation, acting as a regulatory brake on regenerative growth to prevent over-expansion while allowing restoration of liver mass.[41]Pharmacology
Agonists
The primary endogenous ligand for the 5-HT2B receptor is serotonin (5-HT), which serves as the orthosteric agonist and activates the receptor with an EC50 ranging from approximately 4 to 20 nM in functional assays measuring phosphoinositide hydrolysis or calcium mobilization.[42][43] This potency underscores serotonin's central role in mediating 5-HT2B-dependent signaling across various tissues. Among selective synthetic agonists, BW 723C86 stands out as a high-affinity, orally active compound with preferential activity at the 5-HT2B receptor (Ki ≈ 4 nM) and notable use in preclinical studies of peripheral gastrointestinal function.[44] Similarly, 6-APB, a benzofuran derivative classified as an entactogen, functions as a partial agonist at the 5-HT2B receptor, displaying nanomolar potency in functional assays while also interacting with other serotonin receptors and monoamine transporters.[45][46] Non-selective agonists include metabolites of fenfluramine, such as norfenfluramine, which bind with high affinity (Ki 10–50 nM) and act as full agonists at the 5-HT2B receptor in contractile and binding assays.[47] Ergoline derivatives like pergolide also exhibit potent full agonism (pEC50 8.42) at this receptor, contributing to their broader pharmacological profile across dopamine and serotonin systems.[48]| Compound | Type | Affinity/Potency | Key Notes | Source |
|---|---|---|---|---|
| Serotonin (5-HT) | Endogenous | EC50 4–20 nM | Orthosteric full agonist | Pharmacological evidence for a functional serotonin-2B receptor... |
| BW 723C86 | Selective synthetic | Ki ≈ 4 nM | Peripheral GI focus | BW 723C86, a 5-HT2B receptor agonist... |
| 6-APB | Selective synthetic (partial) | Nanomolar EC50 | Entactogen | Pharmacological profile of novel psychoactive benzofurans |
| Norfenfluramine | Non-selective (fenfluramine metabolite) | Ki 10–50 nM | Full agonist | Evidence for Possible Involvement of 5-HT2B Receptors... |
| Pergolide | Non-selective (ergoline) | pEC50 8.42 | Full agonist | Agonism at 5-HT2B receptors is not a class effect... |
Antagonists
Antagonists of the 5-HT2B receptor inhibit the binding of serotonin to this G protein-coupled receptor, thereby blocking downstream signaling pathways such as phospholipase C activation and calcium mobilization. These compounds are valuable tools for dissecting the receptor's role in physiological processes and have been characterized through radioligand binding assays, often using [3H]-LSD or [3H]-5-HT as tracers to measure displacement and determine inhibition constants (Ki) or half-maximal inhibitory concentrations (IC50). Selectivity is typically assessed against related 5-HT2A and 5-HT2C subtypes, with high-affinity antagonists exhibiting nanomolar potencies and substantial fold-selectivity to minimize off-target effects.[50] Selective 5-HT2B antagonists include RS-127445, a high-affinity compound with a pKi of 9.5 at human recombinant 5-HT2B receptors, demonstrating approximately 1000-fold selectivity relative to 5-HT2A and 5-HT2C subtypes in radioligand binding assays using [3H]-LSD displacement in CHO cell membranes. This orally bioavailable agent has been widely used in preclinical studies to probe 5-HT2B-mediated responses without significant interference at other serotonin receptors. Similarly, SB-204741 serves as a potent selective antagonist with a pA2 of 7.95 (equivalent to Ki ≈11 nM) at 5-HT2B, showing at least 135-fold selectivity over 5-HT2C and greater than 1000-fold over 5-HT2A, particularly emphasizing its utility in peripheral tissues where 5-HT2B expression is prominent.[51][52][53] LY-266,097 represents an early selective antagonist with a pKi of 9.3 (Ki ≈ 0.5 nM) for 5-HT2B, displaying over 100-fold selectivity against 5-HT2A and 5-HT2C in binding assays on human embryonic kidney (HEK293) cell membranes expressing the receptor; its tetrahydro-β-carboline structure contributes to a mixed pharmacological profile in functional assays, though it remains a standard tool for 5-HT2B blockade. Non-selective antagonists, such as the ergot derivative methysergide, exhibit broader activity across 5-HT2 receptor subtypes, with a Ki of approximately 9 nM at 5-HT2B determined via [3H]-LSD binding in human receptor assays, alongside comparable affinities at 5-HT2A (Ki ≈ 3 nM) and 5-HT2C (Ki ≈ 1 nM), making it useful for migraine prophylaxis but less ideal for subtype-specific investigations.[54][34][47] Among peripherally selective agents, MARY1, discovered in 2025, is a novel high-affinity 5-HT2B antagonist with an IC50 of 380 nM and Ki of 764 nM in human 5-HT2B-expressing cells using [3H]-5-HT displacement assays, showing subtype selectivity and preferential activity in renal tissues where it promotes mitochondrial biogenesis through receptor blockade without notable central nervous system penetration. The following table summarizes representative binding affinities for these antagonists from key radioligand studies:| Antagonist | 5-HT2B Ki/IC50 (nM) | Selectivity (fold over 5-HT2A/C) | Assay Type | Source |
|---|---|---|---|---|
| RS-127445 | pKi = 9.5 (Ki ≈0.3) | ≈1000 | [3H]-LSD displacement | Knight et al., 1997 |
| SB-204741 | pA2 = 7.95 (Ki ≈11) | ≥135 over 2C; >1000 over 2A | [3H]-5-HT binding | Kennett et al., 1995 |
| LY-266,097 | pKi = 9.3 (Ki ≈0.5) | >100 | [3H]-LSD displacement | Knight et al., 2004 |
| Methysergide | Ki ≈ 9 | Low (≈1-2) | [3H]-LSD binding (human) | Fitzgerald et al., 2000 |
| MARY1 | Ki = 764; IC50=380 | Subtype-selective (peripheral) | [3H]-5-HT displacement | Victor et al., 2025 |
