Recent from talks
All channels
Be the first to start a discussion here.
Be the first to start a discussion here.
Be the first to start a discussion here.
Be the first to start a discussion here.
Welcome to the community hub built to collect knowledge and have discussions related to List of inorganic compounds.
Nothing was collected or created yet.
List of inorganic compounds
View on Wikipediafrom Wikipedia
Although most compounds are referred to by their IUPAC systematic names (following IUPAC nomenclature), traditional names have also been kept where they are in wide use or of significant historical interests.
A
[edit]- Actinium(III) chloride – AcCl3[1]
- Actinium(III) fluoride – AcF3[2]
- Actinium(III) oxide – Ac2O3[3]
- Actinium(III) sulfide – Ac2S3
- Actinium(III) nitrate – Ac(NO3)3
- Actinium(III) bromide – AcBr3
- Actinium(III) hydroxide – Ac(OH)3
- Actinium(III) iodide – AcI3
- Actinium(III) phosphate – AcPO4
- Aluminium antimonide – AlSb[4][5]
- Aluminium arsenate – AlAsO4[6]
- Aluminium arsenide – AlAs[7][8]
- Aluminium diboride – AlB2[9][10]
- Aluminium bromide – AlBr3[11]
- Aluminium carbide – Al4C3[12]
- Aluminium iodide – AlI3[13]
- Aluminium nitride – AlN[14]
- Aluminium oxide – Al2O3[15]
- Aluminium phosphide – AlP[16]
- Aluminium chloride – AlCl3[17]
- Aluminium fluoride – AlF3[18]
- Aluminium hydroxide – Al(OH)3[19][20]
- Aluminium nitrate – Al(NO3)3[21]
- Aluminium sulfide – Al2S3[22]
- Aluminium sulfate – Al2(SO4)3[23]
- Aluminium potassium sulfate – KAl(SO4)2[24]
- Aluminium hydride – AlH3[25]
- Americium(II) bromide – AmBr2[26]
- Americium(III) bromide – AmBr3[27]
- Americium(II) chloride – AmCl2
- Americium(III) chloride – AmCl3[28]
- Americium(III) fluoride – AmF3[29]
- Americium(IV) fluoride – AmF4[30]
- Americium(II) iodide – AmI2[31]
- Americium(III) iodide – AmI3[32]
- Americium dioxide – AmO2[33]
- Ammonia – NH3[34]
- Ammonium azide – [NH4]N3[35]
- Ammonium bicarbonate – [NH4]HCO3[36]
- Ammonium bisulfate – [NH4]HSO4[37]
- Ammonium bromide – NH4Br[38]
- Ammonium chromate – [NH4]2CrO4[39]
- Ammonium cerium(IV) nitrate – [NH4]2[Ce(NO3)6]
- Ammonium cerium(IV) sulfate – [NH4]4[Ce(SO4)4]
- Ammonium chloride – [NH4]Cl[40]
- Ammonium chlorate – [NH4]ClO3[41]
- Ammonium cyanide – [NH4]CN[42]
- Ammonium dichromate – [NH4]2Cr2O7[43]
- Ammonium dihydrogen phosphate – [NH4]H2PO4
- Ammonium hexafluoroaluminate – AlF6H12 N3[44]
- Ammonium hexafluorophosphate – F6H4 NP [45]
- Ammonium hexachloroplatinate – [NH4]2[PtCl6][46]
- Ammonium hexafluorosilicate[47]
- Ammonium hexafluorotitanate[48]
- Ammonium hexafluorozirconate[49]
- Ammonium hydroxide – [NH4]OH[50]
- Ammonium nitrate – [NH4]NO3[51]
- Ammonium orthomolybdate – [NH4]2MoO4
- Ammonium sulfamate – [NH4]SO3NH2[52]
- Ammonium sulfide – [NH4]2S
- Ammonium sulfite – [NH4]2SO3[53]
- Ammonium sulfate – [NH4]2SO4[54]
- Ammonium perchlorate – [NH4]ClO4[55]
- Ammonium permanganate – [NH4]MnO4[56]
- Ammonium persulfate – [NH4]2S2O8[57]
- Ammonium diamminetetrathiocynatochromate(III) – [NH4][Cr(SCN)4(NH3)2]
- Ammonium thiocyanate – [NH4]SCN[58]
- Ammonium triiodide – [NH4][I3][59]
- Diammonium dioxido(dioxo)molybdenum – H8MoN2O4[60]
- Diammonium phosphate – [NH4]2HPO4[61]
- Tetramethylammonium perchlorate – [N(CH3)4]ClO4
- Antimony hydride (stybine) – SbH3[62]
- Antimony pentachloride – SbCl5[63]
- Antimony pentafluoride – SbF5[64]
- Antimony potassium tartrate – K2Sb2(C4H2O6)2[65]
- Antimony sulfate – Sb2(SO4)3[66]
- Antimony trichloride – SbCl3[67]
- Antimony trifluoride – SbF3[68]
- Antimony trioxide – Sb2O3[69]
- Antimony trisulfide – Sb2S3[70]
- Antimony pentasulfide – Sb2S5[71]
- Argon fluorohydride – HArF[72]
- Arsenic trifluoride – AsF3[73]
- Arsenic triiodide –AsI3[74][75][76][77][78][79]
- Arsenic pentafluoride – AsF5[80]
- Arsenic trioxide (Arsenic(III) oxide) – As2O3[81]
- Arsenous acid – As(OH)3[82]
- Arsenic acid – AsO(OH)3[83]
- Arsine – AsH3[84]
B
[edit]- Barium azide – Ba(N3)2[85]
- Barium bromide – BaBr2
- Barium carbonate – BaCO3[86]
- Barium chlorate – Ba(ClO3)2[87]
- Barium chloride – BaCl2[88]
- Barium chromate – BaCrO4[89]
- Barium ferrate – BaFeO4
- Barium ferrite – BaFe12O19[90]
- Barium fluoride – BaF2[91]
- Barium hydroxide – Ba(OH)2[92][93]
- Barium iodide – BaI2[94][95][96][97]
- Barium manganate – BaMnO4[98]
- Barium nitrate – Ba(NO3)2[99]
- Barium oxalate – Ba(C2O4)[100]
- Barium oxide – BaO[101]
- Barium permanganate – Ba(MnO4)2[102]
- Barium peroxide – BaO2[103]
- Barium sulfate – BaSO4[104]
- Barium sulfide – BaS[105]
- Barium titanate – BaTiO3[106]
- Barium thiocyanate – Ba(SCN)2[107]
- Beryllium borohydride – Be[BH4]2[108]
- Beryllium bromide – BeBr2[109]
- Beryllium carbonate – BeCO3[110]
- Beryllium chloride – BeCl2[111]
- Beryllium fluoride – BeF2[112]
- Beryllium hydride – BeH2[113]
- Beryllium hydroxide – Be(OH)2[114]
- Beryllium iodide – BeI2[115]
- Beryllium nitrate – Be(NO3)2[116]
- Beryllium nitride – Be3N2[117][118]
- Beryllium oxide – BeO[119]
- Beryllium sulfate – BeSO4[120]
- Beryllium sulfide – BeS[121][122][123][124]
- Beryllium telluride – BeTe[125]
- Bismuth chloride – BiCl3[126]
- Bismuth ferrite – BiFeO3[127][128]
- Bismuth hydroxide–BiH3O3[129]
- Bismuth(III) iodide–BiI3[130]
- Bismuth(III) nitrate–BiN3O9[131]
- Bismuth(III) oxide – Bi2O3[132]
- Bismuth oxychloride – BiOCl[133]
- Bismuth pentafluoride – BiF5[134]
- Bismuth(III) sulfide– Bi2S3[135]
- Bismuth(III) telluride – Bi2Te3[136]
- Bismuth(III) telluride – Bi2Te3[136]
- Bismuth tribromide – BiBr3[137][138]
- Bismuth tungstate – Bi2WO6
- Borane – BH3[139]
- Borax – Na2B4O7·10H2O[140]
- Borazine – B3H6N3[141]
- Borazocine ((3Z,5Z,7Z)-azaborocine) – B4H8N4[142]
- Boric acid – H3BO3[143]
- Boron carbide – B4C[144]
- Boron nitride – BN[145]
- Boron suboxide – B6O[146]
- Boron tribromide – BBr3[147]
- Boron trichloride – BCl3[148]
- Boron trifluoride – BF3[149]
- Boron triiodide –BI3 [150]
- Boron oxide – B2O3[151]
- Boroxine – B3H3O3[152]
- Decaborane – B10H14[153]
- Diborane – B2H6[154]
- Diboron tetrafluoride – B2F4[155]
- Pentaborane – B5H9[156]
- Tetraborane – B4H10[157][158][159]
- Bromine monochloride – BrCl[160]
- Bromine pentafluoride – BrF5[161]
- Perbromic acid – HBrO4[162]
- Aluminium Bromide – AlBr3[11]
- Ammonium bromide – NH4Br[38]
- Boron tribromide – BBr3[147]
- Bromic acid – HBrO3[163]
- Bromine monoxide – Br2O[164]
- Bromine pentafluoride – BrF5[165]
- Bromine trifluoride – BrF3[166]
- Bromine monofluoride – BrF[167]
- Calcium bromide – CaBr2[168]
- Carbon tetrabromide – CBr4[169]
- Copper(I) bromide – CuBr[170]
- Copper(II) bromide – CuBr2[171]
- Hydrobromic acid – HBr(aq)
- Hydrogen bromide – HBr[172]
- Hypobromous acid – HOBr[173]
- Iodine monobromide – IBr[174]
- Iron(II) bromide – FeBr2[175]
- Iron(III) bromide – FeBr3[176]
- Lead(II) bromide – PbBr2[177]
- Lithium bromide – LiBr[178]
- Magnesium bromide – MgBr2[179]
- Mercury(I) bromide – Hg2Br2[180]
- Mercury(II) bromide – HgBr2[181][182]
- Nitrosyl bromide – NOBr[183]
- Phosphorus pentabromide – PBr5[184]
- Phosphorus tribromide – PBr3[185]
- Phosphorus heptabromide – PBr7[186]
- Potassium bromide – KBr[187]
- Potassium bromate – KBrO3[188]
- Potassium perbromate – KBrO4[189]
- Tribromosilane – HSiBr3[190]
- Silicon tetrabromide – SiBr4[191]
- Silver bromide – AgBr[192][193][194][195]
- Sodium bromide – NaBr[196][197]
- Sodium bromate – NaBrO3[198]
- Sodium perbromate – NaBrO4[199]
- Thionyl bromide – SOBr2[200]
- Tin(II) bromide – SnBr2[201]
- Zinc bromide – ZnBr2[202]
C
[edit]- Cadmium arsenide – Cd3As2
- Cadmium bromide – CdBr2
- Cadmium chloride – CdCl2
- Cadmium fluoride – CdF2
- Cadmium iodide – CdI2
- Cadmium nitrate – Cd(NO3)2
- Cadmium oxide – CdO
- Cadmium phosphide – Cd3P2
- Cadmium selenide – CdSe
- Cadmium sulfate – CdSO4
- Cadmium sulfide – CdS
- Cadmium telluride – CdTe
- Caesium bicarbonate – CsHCO3
- Caesium carbonate – Cs2CO3
- Caesium chloride – CsCl
- Caesium chromate – Cs2CrO4
- Caesium fluoride – CsF
- Caesium hydride – CsH
- Caesium hydrogen sulfate – CsHSO4
- Caesium iodide – CsI
- Caesium sulfate – Cs2SO4
- Californium(III) bromide – CfBr3
- Californium(III) carbonate – Cf2(CO3)3
- Californium(III) chloride – CfCl3
- Californium(III) fluoride – CfF3
- Californium(III) iodide – CfI3
- Californium(II) iodide – CfI2
- Californium(III) nitrate – Cf(NO3)3
- Californium(III) oxide – Cf2O3
- Californium(III) phosphate – CfPO4
- Californium(III) sulfate – Cf2(SO4)3
- Californium(III) sulfide – Cf2S3
- Californium oxyfluoride – CfOF
- Californium oxychloride – CfOCl
- Calcium bromide – CaBr2
- Calcium carbide – CaC2
- Calcium carbonate (Precipitated Chalk) – CaCO3
- Calcium chlorate – Ca(ClO3)2
- Calcium chloride – CaCl2
- Calcium chromate – CaCrO4
- Calcium cyanamide – CaCN2
- Calcium fluoride – CaF2
- Calcium hydride – CaH2
- Calcium hydroxide – Ca(OH)2
- Calcium monosilicide – CaSi
- Calcium oxalate – CaC2O4
- Calcium hydroxychloride – CaOCl2
- Calcium perchlorate – Ca(ClO4)2
- Calcium permanganate – Ca(MnO4)2
- Calcium sulfate (gypsum) – CaSO4
- Carbon dioxide – CO2
- Carbon disulfide – CS2
- Carbon monoxide – CO
- Carbon tetrabromide – CBr4
- Carbon tetrachloride – CCl4
- Carbon tetrafluoride – CF4
- Carbon tetraiodide – CI4
- Carbonic acid – H2CO3
- Carbonyl chloride – COCl2
- Carbonyl fluoride – COF2
- Carbonyl sulfide – COS
- Carboplatin – C6H12N2O4Pt
- Cerium(III) bromide – CeBr3
- Cerium(III) carbonate – Ce2(CO3)3
- Cerium(III) chloride – CeCl3
- Cerium(III) fluoride – CeF3
- Cerium(III) hydroxide – Ce(OH)3
- Cerium(III) iodide – CeI3
- Cerium(III) nitrate – Ce(NO3)3
- Cerium(III) oxide – Ce2O3
- Cerium(III) sulfate – Ce2(SO4)3
- Cerium(III) sulfide – Ce2S3
- Cerium(IV) hydroxide – Ce(OH)4
- Cerium(IV) nitrate – Ce(NO3)4
- Cerium(IV) oxide – CeO2
- Cerium(IV) sulfate – Ce(SO4)2
- Cerium(III,IV) oxide – Ce3O4
- Ceric ammonium nitrate – (NH4)2Ce(NO3)6
- Cerium hexaboride – CeB6
- Cerium aluminium – CeAl
- Cerium cadmium – CeCd
- Cerium magnesium – CeMg
- Cerium mercury – CeHg
- Cerium silver – CeAg
- Cerium thallium – CeTl
- Cerium zinc – CeZn
- Actinium(III) chloride – AcCl3
- Aluminium chloride – AlCl3
- Americium(III) chloride – AmCl3
- Ammonium chloride – [NH4]Cl
- Antimony(III) chloride – SbCl3
- Antimony(V) chloride – SbCl5
- Arsenic(III) chloride – AsCl3
- Barium chloride – BaCl2
- Beryllium chloride – BeCl2
- Bismuth(III) chloride – BiCl3
- Boron trichloride – BCl3
- Bromine monochloride – BrCl
- Cadmium chloride – CdCl2
- Caesium chloride – CsCl
- Calcium chloride – CaCl2
- Calcium hypochlorite – Ca(ClO)2
- Carbon tetrachloride – CCl4
- Cerium(III) chloride – CeCl3
- Chloramine – NH2Cl
- Chloric acid – HClO3
- Chlorine azide – ClN3
- Chlorine dioxide – ClO2
- Chlorine dioxide – ClO2
- Chlorine monofluoride – ClF
- Chlorine monoxide – ClO
- Chlorine pentafluoride – ClF5
- Chlorine perchlorate – Cl2O4
- Chlorine tetroxide – O3ClOOClO3
- Chlorine trifluoride – ClF3
- Chlorine trifluoride – ClF3
- Chlorine trioxide – ClO3
- Chlorine trioxide – ClO3
- Chloroplatinic acid – H2[PtCl6]
- Chlorosulfonic acid – ClSO3H
- Chlorosulfonyl isocyanate – ClSO2NCO
- Chloryl fluoride – ClO2F
- Chromium(II) chloride – CrCl2
- Chromium(III) chloride – CrCl3
- Chromyl chloride – CrO2Cl2
- Cisplatin (cis–platinum(II) chloride diamine) – [PtCl2(NH3)2]
- Cobalt(II) chloride – CoCl2
- Copper(I) chloride – CuCl
- Copper(II) chloride – CuCl2
- Curium(III) chloride – CmCl3
- Cyanogen chloride – ClCN
- Dichlorine dioxide – Cl2O2
- Dichlorine heptaoxide – Cl2O7
- Dichlorine heptoxide – Cl2O7
- Dichlorine hexoxide – Cl2O6
- Dichlorine monoxide – Cl2O
- Dichlorine monoxide – Cl2O
- Dichlorine tetroxide (chlorine perchlorate) – ClOClO3
- Dichlorine trioxide – Cl2O3
- Dichlorosilane – SiH2Cl2
- Disulfur dichloride – S2Cl2
- Dysprosium(III) chloride – DyCl3
- Erbium(III) chloride – ErCl3
- Europium(II) chloride – EuCl2
- Europium(III) chloride – EuCl3
- Gadolinium(III) chloride – GdCl3
- Gallium trichloride – GaCl3
- Germanium dichloride – GeCl2
- Germanium tetrachloride – GeCl4
- Gold(I) chloride – AuCl
- Gold(III) chloride – AuCl3
- Hafnium(IV) chloride – HfCl4
- Holmium(III) chloride – HoCl3
- Hydrochloric acid – HCl(aq)
- Hydrogen chloride – HCl
- Hypochlorous acid – HOCl
- Indium(I) chloride – InCl
- Indium(III) chloride – InCl3
- Iodine monochloride – ICl
- Iridium(III) chloride – IrCl3
- Iron(II) chloride – FeCl2
- Iron(III) chloride – FeCl3
- Lanthanum chloride – LaCl3
- Lead(II) chloride – PbCl2
- Lithium chloride – LiCl
- Lithium perchlorate – LiClO4
- Lutetium chloride – LuCl3
- Magnesium chloride – MgCl2
- Magnesium perchlorate – Mg(ClO4)2
- Manganese(II) chloride – MnCl2
- Mercury(I) chloride – Hg2Cl2
- Mercury(II) chloride – HgCl2
- Mercury(II) perchlorate – Hg(ClO4)2
- Molybdenum(III) chloride – MoCl3
- Molybdenum(V) chloride – MoCl5
- Neodymium(III) chloride – NdCl3
- Neptunium(IV) chloride – NpCl4
- Nickel(II) chloride – NiCl2
- Niobium oxide trichloride – NbOCl3
- Niobium(IV) chloride – NbCl4
- Niobium(V) chloride – NbCl5
- Nitrogen trichloride – NCl3
- Nitrosyl chloride – NOCl
- Nitryl chloride – NO2Cl
- Osmium(III) chloride – OsCl3
- Palladium(II) chloride – PdCl2
- Perchloric acid – HClO4
- Perchloryl fluoride – ClO3F
- Phosgene – COCl2
- Phosphonitrilic chloride trimer – (PNCl)3
- Phosphorus oxychloride – POCl3
- Phosphorus pentachloride – PCl5
- Phosphorus trichloride – PCl3
- Platinum(II) chloride – PtCl2
- Platinum(IV) chloride – PtCl4
- Plutonium(III) chloride – PuCl3
- Potassium chlorate – KClO3
- Potassium chloride – KCl
- Potassium perchlorate – KClO4
- Praseodymium(III) chloride – PrCl3
- Protactinium(V) chloride – PaCl5
- Radium chloride – RaCl2
- Rhenium(III) chloride – ReCl3
- Rhenium(V) chloride – ReCl5
- Rhodium(III) chloride – RhCl3
- Rubidium chloride – RbCl
- Ruthenium(III) chloride – RuCl3
- Samarium(III) chloride – SmCl3
- Scandium chloride – ScCl3
- Selenium dichloride – SeCl2
- Selenium tetrachloride – SeCl4
- Silicon tetrachloride – SiCl4
- Silver chloride – AgCl
- Silver perchlorate – AgClO4
- Sodium chlorate – NaClO3
- Sodium chloride (table salt, rock salt) – NaCl
- Sodium chlorite – NaClO2
- Sodium hypochlorite – NaOCl
- Sodium perchlorate – NaClO4
- Strontium chloride – SrCl2
- Sulfur dichloride – SCl2
- Sulfuryl chloride – SO2Cl2
- Tantalum(III) chloride – TaCl3
- Tantalum(IV) chloride – TaCl4
- Tantalum(V) chloride – TaCl5
- Tellurium tetrachloride – TeCl4
- Terbium(III) chloride – TbCl3
- Tetrachloroauric acid – H[AuCl4]
- Thallium(I) chloride – TlCl
- Thallium(III) chloride – TlCl3
- Thionyl chloride – SOCl2
- Thiophosgene – CSCl2
- Thorium(IV) chloride – ThCl4
- Thulium(III) chloride – TmCl3
- Tin(II) chloride – SnCl2
- Tin(IV) chloride – SnCl4
- Titanium tetrachloride – TiCl4
- Titanium(III) chloride – TiCl3
- Trichlorosilane – HSiCl3
- Trigonal bipyramidal – CdCl5
- Tungsten(IV) chloride – WCl4
- Tungsten(V) chloride – WCl5
- Tungsten(VI) chloride – WCl6
- Uranium hexachloride – UCl6
- Uranium(III) chloride – UCl3
- Uranium(IV) chloride – UCl4
- Uranium(V) chloride – UCl5
- Uranyl chloride – UO2Cl2
- Vanadium oxytrichloride – VOCl3
- Vanadium(II) chloride – VCl2
- Vanadium(III) chloride – VCl3
- Vanadium(IV) chloride – VCl4
- Ytterbium(III) chloride – YbCl3
- Yttrium chloride – YCl3
- Zinc chloride – ZnCl2
- Zirconium(IV) chloride – ZrCl4
- Chromic acid – H2CrO4
- Chromium trioxide (Chromic acid) – CrO3
- Chromium(II) chloride (chromous chloride) – CrCl2
- Chromium(II) sulfate – CrSO4
- Chromium(III) chloride – CrCl3
- Chromium(III) nitrate – Cr(NO3)3
- Chromium(III) oxide – Cr2O3
- Chromium(III) sulfate – Cr2(SO4)3
- Chromium(III) telluride – Cr2Te3
- Chromium(IV) oxide – CrO2
- Chromium pentafluoride – CrF5
- Chromium sulfide bromide – CrSBr[203]
- Chromyl chloride – CrO2Cl2
- Chromyl fluoride – CrO2F2
- Cobalt(II) acetate – Co(CH3CO2)2
- Cobalt(II) bromide – CoBr2
- Cobalt(II) carbonate – CoCO3
- Cobalt(II) chloride – CoCl2
- Cobalt(II) fluoride – CoF2
- Cobalt(II) hydroxide – Co(OH)2
- Cobalt(II) iodide – CoI2
- Cobalt(II) nitrate – Co(NO3)2
- Cobalt(II) oxide – CoO
- Cobalt(II) perchlorate – Co(ClO4)2
- Cobalt(II) phosphate – Co3(PO4)2
- Cobalt(II) sulfate – CoSO4
- Cobalt(II) thiocyanate – Co(SCN)2
- Cobalt(II,III) oxide – Co3O4
- Cobalt(III) chloride – CoCl3
- Cobalt(III) fluoride – CoF3
- Cobalt(III) hydroxide – Co(OH)3
- Cobalt(III) nitrate – Co(NO3)3
- Cobalt(III) oxide – Co2O3
- Copper(I) acetylide – Cu2C2
- Copper(I) azide – CuN3
- Copper(I) bromide – CuBr
- Copper(I) chloride – CuCl
- Copper(I) fluoride – CuF
- Copper(I) hydroxide – CuOH
- Copper(I) iodide – CuI
- Copper(I) nitrate – CuNO3
- Copper(I) oxide – Cu2O
- Copper(I) phosphide – Cu3P
- Copper(I) selenide – Cu2Se
- Copper(I) sulfate – CuSO4
- Copper(I) sulfide – Cu2S
- Copper(I) telluride – Cu2Te
- Copper(I) thiocyanate – CuSCN
- Copper(I,II) sulfite – Cu3(SO3)2
- Copper(II) arsenate – Cu3(AsO4)2
- Copper(II) azide – Cu(N3)2
- Copper(II) borate – Cu3(BO3)2
- Copper(II) bromide – CuBr2
- Copper(II) carbonate – CuCO3
- Copper(II) carbonate hydroxide – Cu2(CO3)(OH)2
- Copper(II) chlorate – Cu(ClO3)2
- Copper(II) chloride – CuCl2
- Copper(II) fluoride – CuF2
- Copper(II) hydroxide – Cu(OH)2
- Copper(II) nitrate – Cu(NO3)2
- Copper(II) oxide – CuO
- Copper(II) perchlorate – Cu(ClO4)2
- Copper(II) phosphate – Cu3(PO4)2
- Copper(II) selenide – CuSe
- Copper(II) selenite – CuSeO3
- Copper(II) sulfate – CuSO4
- Copper(II) sulfide – CuS
- Copper(II) telluride – CuTe
- Copper(II) thiocyanate – Cu(SCN)2
- Copper oxychloride – H3ClCu2O3[204]
- Tetramminecopper(II) sulfate – [Cu(NH3)4]SO4
- Curium(III) chloride – CmCl3
- Curium(III) oxide – Cm2O3
- Curium(IV) oxide – CmO2
- Curium hydroxide – Cm(OH)3
CN
[edit]- Cyanogen bromide – BrCN
- Cyanogen chloride – ClCN
- Cyanogen iodide – ICN
- Cyanogen – (CN)2
- Cyanuric chloride – C3Cl3N3
- Cyanogen thiocyanate – CNSCN[205]
- Cyanogen selenocyanate – CNSeCN[205]
- Cyanogen azide – N3CN[205]
D
[edit]- Dysprosium(II) chloride – DyCl2
- Dysprosium(II) iodide – DyI2
- Dysprosium(III) acetate – Dy(CH3COO)3
- Dysprosium(III) bromide – DyBr3
- Dysprosium(III) carbonate – Dy2(CO3)3
- Dysprosium(III) chloride – DyCl3
- Dysprosium(III) fluoride – DyF3
- Dysprosium(III) iodide – DyI3
- Dysprosium(III) nitrate – Dy(NO3)3
- Dysprosium(III) oxalate – Dy2(C2O4)3
- Dysprosium(III) oxide – Dy2O3
- Dysprosium(III) phosphate – DyPO4
- Dysprosium(III) selenide – Dy2Se3
- Dysprosium(III) sulfide – Dy2S3
- Dysprosium(III) sulfate – Dy2(SO4)3
- Dysprosium(III) telluride – Dy2Te3
- Dysprosium arsenide – DyAs
- Dysprosium bismuthide – DyBi
- Dysprosium iodate – Dy(IO3)3
- Dysprosium monosulfide – DyS
- Dysprosium nitride – DyN
- Dysprosium phosphide – DyP
- Dysprosium stannate – Dy2Sn2O7
- Dysprosium titanate – Dy2Ti2O7
E
[edit]- Einsteinium(III) bromide – EsBr3
- Einsteinium(III) carbonate – Es2(CO3)3
- Einsteinium(III) chloride – EsCl3
- Einsteinium(III) fluoride – EsF3
- Einsteinium(III) iodide – EsI3
- Einsteinium(III) nitrate – Es(NO3)3
- Einsteinium(III) oxide – Es2O3
- Einsteinium(III) phosphate – EsPO4
- Einsteinium(III) sulfate – Es2(SO4)3
- Einsteinium(III) sulfide – Es2S3
- Erbium-copper – ErCu
- Erbium-gold – ErAu
- Erbium-iridium – ErIr
- Erbium-silver – ErAg
- Erbium hexaboride – ErB6
- Erbium iodate – Er(IO3)3
- Erbium nitride – ErN
- Erbium oxybromide – ErOBr
- Erbium oxychloride – ErOCl
- Erbium oxyfluoride – ErOF
- Erbium phosphide – ErP
- Erbium silicide – ErSi2
- Erbium tetraboride – ErB4
- Erbium(III) bromide – ErBr3
- Erbium(III) chloride – ErCl3
- Erbium(III) fluoride – ErF3
- Erbium(III) hydroxide – Er(OH)3
- Erbium(III) iodide – ErI3
- Erbium(III) nitrate – Er(NO3)3
- Erbium(III) oxide – Er2O3
- Erbium(III) selenate – Er2(SeO4)3
- Erbium(III) selenide – Er2Se3
- Erbium(III) sulfate – Er2(SO4)3
- Erbium(III) telluride – Er2Te3
- Europium(II) chloride – EuCl2
- Europium(II) sulfate – EuSO4
- Europium(III) bromide – EuBr3
- Europium(III) chloride – EuCl3
- Europium(III) iodate – Eu(IO3)3
- Europium(III) iodide – EuI3
- Europium(III) nitrate – Eu(NO3)3
- Europium(III) oxide – Eu2O3
- Europium(III) perchlorate – Eu(ClO4)3
- Europium(III) sulfate – Eu2(SO4)3
- Europium(III) vanadate – EuVO4
F
[edit]- Fluoroantimonic acid – H2FSbF6
- Tetrafluorohydrazine – N2F4
- Trifluoromethylisocyanide – C2NF3
- Trifluoromethanesulfonic acid – CF3SO3H
- Other fluorides: AlF3, AmF3, NH4F, NH4HF2, NH4BF4, SbF5, SbF3, AsF5, AsF3, BaF2, BeF2, BiF3, F5SOOSF5, BF3, BrF5, BrF3, BrF, CdF2, CsF, CaF2, CF4, COF2, CeF3, CeF4, ClF5, ClF3, ClF, CrF3, CrF5, CrO2F2, CoF2, CoF3, CuF, CuF2, CmF3, N2F2, N2F4, O2F2, P2F4, S2F2, DyF3, ErF3, EuF3, HBF4, FN3, FOSO2F, FNO3, FSO3H, GdF3, GaF3, GeF4, AuF3, HfF4, H2SbF6, HPF6, H2SiF6, H2TiF6, HF, HF(aq), HFO, InF3, IF7, IF, IF5, IrF3, IrF6, FeF2, FeF3, KrF2, LaF3, PbF2, PbF4, LiF, MgF2, MnF2, MnF3, MnF4, Hg2F2, HgF2, MoF3, MoF5, MoF6, NbF4, NbF5, NdF3, NiF2, NpF4, NpF5, NpF6, ONF3, NF3, NO2BF4, NOBF4, NOF, NO2F, OsF4, OsF6, OsF7, OF2, PdF2, PdF4, FSO2OOSO2F, POF3, PF5, PF3, PtF2, PtF4, PtF6, PuF3, PuF4, PuF6, KF, KPF6, KBF4, PrF3, PaF5, RaF2, RnF2, ReF4, ReF6, ReF7, RhF3, RbF, RuF3, RuF4, RuF6, SmF3, ScF3, SeF6, SeF4, SiF4, AgF, AgF2, AgBF4, NaF, NaFSO3, Na3AlF6, NaSbF6, NaPF6, Na2SiF6, Na2TiF6, NaBF4, SrF2, SF2, SF6, SF4, SO2F2, TaF5, TcF6, TeF6, TeF4, TlF, TlF3, SOF2, ThF4, SnF2, SnF4, TiF3, TiF4, HSiF3, WF6, UF4, UF5, UF6, UO2F2, VF3, VF4, VF5, XeF2, XeO2F2, XeF6, XePtF6, XeF4, YbF3, YF3, ZnF2, ZrF4
- Francium oxide – Fr2O
- Francium chloride – FrCl
- Francium bromide – FrBr
- Francium iodide – FrI
- Francium carbonate – Fr2CO3
- Francium hydroxide – FrOH
- Francium sulfate – Fr2SO4
G
[edit]- Gadolinium(III) chloride – GdCl3
- Gadolinium(III) oxide – Gd2O3
- Gadolinium(III) carbonate – Gd2(CO3)3
- Gadolinium(III) chloride – GdCl3
- Gadolinium(III) fluoride – GdF3
- Gadolinium gallium garnet – Gd3Ga5O12
- Gadolinium(III) nitrate – Gd(NO3)3
- Gadolinium(III) oxide – Gd2O3
- Gadolinium(III) phosphate – GdPO4
- Gadolinium(III) sulfate – Gd2(SO4)3
- Gallium antimonide – GaSb
- Gallium arsenide – GaAs
- Gallium(III) fluoride – GaF3
- Gallium trichloride – GaCl3
- Gallium nitride – GaN
- Gallium phosphide – GaP
- Gallium(II) sulfide – GaS
- Gallium(III) sulfide – Ga2S3
- Digermane – Ge2H6
- Germane – GeH4
- Germanium(II) bromide – GeBr2
- Germanium(II) chloride – GeCl2
- Germanium(II) fluoride – GeF2
- Germanium(II) iodide – GeI2
- Germanium(II) oxide – GeO
- Germanium(II) selenide – GeSe
- Germanium(II) sulfide – GeS
- Germanium(IV) bromide – GeBr4
- Germanium(IV) chloride – GeCl4
- Germanium(IV) fluoride – GeF4
- Germanium(IV) iodide – GeI4
- Germanium(IV) nitride – Ge3N4
- Germanium(IV) oxide – GeO2
- Germanium(IV) selenide – GeSe2
- Germanium(IV) sulfide – GeS2
- Germanium difluoride – GeF2
- Germanium dioxide – GeO2
- Germanium tetrachloride – GeCl4
- Germanium tetrafluoride – GeF4
- Germanium telluride – GeTe
- Gold(I) bromide – AuBr
- Gold(I) chloride – AuCl
- Gold(I) cyanide – AuCN
- Gold(I) hydride – AuH
- Gold(I) iodide – AuI
- Gold(I) selenide – Au2Se
- Gold(I) sulfide – Au2S
- Gold(III) bromide – (AuBr3)2
- Gold(III) chloride – (AuCl3)2
- Gold(III) fluoride – AuF3
- Gold(III) iodide – AuI3
- Gold(III) oxide – Au2O3
- Gold(III) selenide – Au2Se3
- Gold(III) sulfide – Au2S3
- Gold(III) nitrate – Au(NO3)3
- Gold(V) fluoride – AuF5
- Gold(I,III) chloride – Au4Cl8
- Gold ditelluride – AuTe2
- Gold heptafluoride – AuF5·F2 (AuF7)
H
[edit]- Hafnium(IV) bromide – HfBr4
- Hafnium(IV) carbide – HfC
- Hafnium(IV) chloride – HfCl4
- Hafnium(IV) fluoride – HfF4
- Hafnium(IV) iodide – HfI4
- Hafnium(IV) oxide – HfO2
- Hafnium(IV) silicate – HfSiO4
- Hafnium(IV) sulfide – HfS2
- Hexadecacarbonylhexarhodium – Rh6(CO)16
- Hassium tetroxide – HsO4
- Holmium(III) carbonate – Ho2(CO3)3
- Holmium(III) chloride – HoCl3
- Holmium(III) fluoride – HoF3
- Holmium(III) nitrate – Ho(NO3)3
- Holmium(III) oxide – Ho2O3
- Holmium(III) phosphate – HoPO4
- Holmium(III) sulfate – Ho2(SO4)3
- Hexafluorosilicic acid – H2F6Si
- Hydrazine – N2H4
- Hydrazoic acid – HN3
- Hydroiodic acid – HI
- Hydrogen bromide – HBr
- Hydrogen chloride – HCl
- Hydrogen cyanide – HCN
- Hydrogen fluoride – HF
- Hydrogen peroxide – H2O2
- Hydrogen selenide – H2Se
- Hydrogen sulfide – H2S
- Hydrogen telluride – H2Te
- Hydroxylamine – NH2OH
- Hypobromous acid – HBrO
- Hypochlorous acid – HClO
- Hypophosphorous acid – H3PO2
- Metaphosphoric acid – HPO3
- Protonated molecular hydrogen – H+3
- Trioxidane – H2O3
- Water - H2O[206]
- Sodium helide – Na2He
I
[edit]- Indium(I) bromide – InBr
- Indium(I) iodide – InI
- Indium(I) oxide – In2O
- Indium(III) bromide – InBr3
- Indium(III) chloride – InCl3
- Indium(III) fluoride – InF3
- Indium(III) nitrate – In(NO3)3
- Indium(III) oxide – In2O3
- Indium(III) selenide – In2Se3
- Indium(III) sulfate – In2(SO4)3
- Indium(III) sulfide – In2S3
- Indium antimonide – InSb
- Indium arsenide – InAs
- Indium nitride – InN
- Indium phosphide – InP
- Trimethylindium – In(CH3)3
- Iodic acid – HIO3
- Iodine heptafluoride – IF7
- Iodine pentafluoride – IF5
- Iodine monochloride – ICl
- Iodine trichloride – ICl3
- Iodine pentachloride - ICl5
- Iodine tribromide - IBr3
- Periodic acid – HIO4
- Tetrachloroiodic acid - HICl4
- Iridium(IV) chloride – IrCl4
- Iridium(V) fluoride – IrF5
- Iridium hexafluoride – IrF6
- Iridium tetrafluoride – IrF4
- Columbite – Fe2+Nb2O6
- Iron(II) chloride – FeCl2
- Iron(II) oxalate – FeC2O4
- Iron(II) oxide – FeO
- Iron(II) selenate – FeSeO4
- Iron(II) sulfate – FeSO4
- Iron(III) chloride – FeCl3
- Iron(III) fluoride – FeF3
- Iron(III) oxalate – C6Fe2O12
- Iron(III) oxide – Fe2O3
- Iron(III) nitrate – Fe(NO3)3(H2O)9
- Iron(III) sulfate – Fe2(SO4)3
- Iron(III) thiocyanate – Fe(SCN)3
- Iron(II,III) oxide – Fe3O4
- Iron ferrocyanide – Fe7(CN)18
- Prussian blue (Iron(III) hexacyanoferrate(II)) – Fe4[Fe(CN)6]3
- Ammonium iron(II) sulfate – (NH4)2Fe(SO4)2
- Iron(II) bromide – FeBr2
- Iron(III) bromide – FeBr3
- Iron(II) chloride – FeCl2
- Iron(III) chloride – FeCl3
- Iron disulfide – FeS2
- Iron dodecacarbonyl – Fe3(CO)12
- Iron(III) fluoride – FeF3
- Iron(II) iodide – FeI2
- Iron naphthenate – Fe(ONap)3
- Iron(III) nitrate – Fe(NO3)3
- Iron nonacarbonyl – Fe2(CO)9
- Iron(II) oxalate – FeC2O4
- Iron(II,III) oxide – Fe3O4
- Iron(III) oxide – Fe2O3
- Iron pentacarbonyl – Fe(CO)5
- Iron(III) perchlorate – Fe(ClO4)3
- Iron(III) phosphate – FePO4
- Iron(II) sulfamate – (NH2SO3)2Fe
- Iron(II) sulfate – FeSO4
- Iron(III) sulfate – Fe2(SO4)3
- Iron(II) sulfide – FeS
K
[edit]- Krypton difluoride – KrF2
L
[edit]- Lanthanum aluminium – LaAl
- Lanthanum cadmium – LaCd
- Lanthanum carbonate – La2(CO3)3
- Lanthanum magnesium – LaMg
- Lanthanum manganite – LaMnO3
- Lanthanum mercury – LaHg
- Lanthanum silver – LaAg
- Lanthanum thallium – LaTl
- Lanthanum zinc – LaZn
- Lanthanum boride – LaB6
- Lanthanum carbonate – La2(CO3)3
- Lanthanum(III) chloride – LaCl3
- Lanthanum trifluoride – LaF3
- Lanthanum(III) oxide – La2O3
- Lanthanum(III) nitrate – La(NO3)3
- Lanthanum(III) phosphate – LaPO4
- Lanthanum(III) sulfate – La2(SO4)3
- Lead(II) azide – Pb(N3)2
- Lead(II) bromide – PbBr2
- Lead(II) carbonate – Pb(CO3)
- Lead(II) chloride – PbCl2
- Lead(II) fluoride – PbF2
- Lead(II) hydroxide – Pb(OH)2
- Lead(II) iodide – PbI2
- Lead(II) nitrate – Pb(NO3)2
- Lead(II) oxide – PbO
- Lead(II) phosphate – Pb3(PO4)2
- Lead(II) sulfate – Pb(SO4)
- Lead(II) selenide – PbSe
- Lead(II) sulfide – PbS
- Lead(II) telluride – PbTe
- Lead(II) thiocyanate – Pb(CNS)2
- Lead(II,IV) oxide – Pb3O4
- Lead(IV) oxide – PbO2
- Lead(IV) sulfide – PbS2
- Lead hydrogen arsenate – PbHAsO4
- Lead styphnate – C6HN3O8Pb
- Lead tetrachloride – PbCl4
- Lead tetrafluoride – PbF4
- Lead tetroxide – Pb3O4[207]
- Lead titanate – PbTiO3
- Lead zirconate titanate – Pb[TixZr1−x]O3 (e.g., x = 0.52 is lead zirconium titanate)
- Plumbane – PbH4
- Lithium tetrachloroaluminate – LiAlCl4
- Lithium aluminium hydride – LiAlH4
- Lithium bromide – LiBr
- Lithium borohydride – LiBH4
- Lithium carbonate (Lithium salt) – Li2CO3
- Lithium chloride – LiCl
- Lithium hypochlorite – LiClO
- Lithium chlorate – LiClO3
- Lithium perchlorate – LiClO4
- Lithium cobalt oxide – LiCoO2
- Lithium oxide – Li2O
- Lithium peroxide – Li2O2
- Lithium hydride – LiH
- Lithium hydroxide – LiOH
- Lithium iodide – LiI
- Lithium iron phosphate – FeLiO4P
- Lithium nitrate – LiNO3
- Lithium sulfide – Li2S
- Lithium sulfite – Li2SO3
- Lithium sulfate – Li2SO4
- Lithium superoxide – LiO2
- Lithium hexafluorophosphate – LiPF6
M
[edit]- Magnesium antimonide – MgSb
- Magnesium bromide – MgBr2
- Magnesium carbonate – MgCO3
- Magnesium chloride – MgCl2
- Magnesium citrate – C6H6MgO7
- Magnesium oxide – MgO
- Magnesium perchlorate – Mg(ClO4)2
- Magnesium phosphate – Mg3(PO4)2
- Magnesium sulfate – MgSO4
- Magnesium bicarbonate – Mg(HCO3)2
- Magnesium boride – MgB6
- Magnesium bromide – MgBr2
- Magnesium carbide – MgC2
- Magnesium carbonate – MgCO3
- Magnesium chloride – MgCl2
- Magnesium cyanamide – MgCN2
- Magnesium fluoride – MgF2
- Magnesium fluorophosphate – MgPO3F
- Magnesium gluconate – Mg(HOCH2(CHOH)4CO2)2
- Magnesium hydride – MgH2
- Dimagnesium phosphate – MgHPO4
- Magnesium hydroxide – Mg(OH)2
- Magnesium hypochlorite – Mg(OCl)2
- Magnesium iodide – MgI2
- Magnesium molybdate – MgMoO4
- Magnesium nitrate – Mg(NO3)2
- Magnesium oxalate – MgC2O4
- Magnesium peroxide – MgO2
- Magnesium phosphate – Mg3(PO4)2
- Magnesium silicate – MgSiO3
- Magnesium sulfate – MgSO4
- Magnesium sulfide – MgS
- Magnesium titanate – MgTiO3
- Magnesium tungstate – MgWO4
- Magnesium zirconate – MgZrO3
- Manganese(II) bromide – MnBr2
- Manganese(II) chloride – MnCl2
- Manganese(II) hydroxide – Mn(OH)2
- Manganese(II) oxide – MnO
- Manganese(II) phosphate – Mn3(PO4)2
- Manganese(II) sulfate – MnSO4
- Manganese(II) sulfate monohydrate – MnSO4·H2O
- Manganese(III) chloride – MnCl3
- Manganese(III) oxide – Mn2O3
- Manganese(IV) fluoride – MnF4
- Manganese(IV) oxide (manganese dioxide) – MnO2
- Manganese(II,III) oxide – Mn3O4
- Manganese dioxide – MnO2
- Manganese heptoxide – Mn2O7
- Mercury(I) chloride – Hg2Cl2
- Mercury(I) sulfate – Hg2SO4
- Mercury(II) chloride – HgCl2
- Mercury(II) hydride – HgH2
- Mercury(II) selenide – HgSe
- Mercury(II) sulfate – HgSO4
- Mercury(II) sulfide – HgS
- Mercury(II) telluride – HgTe
- Mercury(II) thiocyanate – Hg(SCN)2
- Mercury(IV) fluoride – HgF4
- Mercury fulminate – Hg(ONC)2
- Molybdenum(II) bromide – MoBr2
- Molybdenum(II) chloride – Mo6Cl12
- Molybdenum(III) bromide – MoBr3
- Molybdenum(III) chloride – MoCl3
- Molybdenum(IV) carbide – MoC
- Molybdenum(IV) chloride – MoCl4
- Molybdenum(IV) fluoride – MoF4
- Molybdenum(V) chloride – Mo2Cl10
- Molybdenum(V) fluoride – MoF5
- Molybdenum disulfide – MoS2
- Molybdenum hexacarbonyl – Mo(CO)6
- Molybdenum hexafluoride – MoF6
- Molybdenum tetrachloride – MoCl4
- Molybdenum trioxide – MoO3
- Molybdic acid – H2MoO4
N
[edit]- Neodymium acetate – Nd(CH3COO)3
- Neodymium(III) arsenate – NdAsO4
- Neodymium(II) chloride – NdCl2
- Neodymium(III) chloride – NdCl3
- Neodymium magnet – Nd2Fe14B
- Neodymium(II) bromide – NdBr2
- Neodymium(III) bromide – NdBr3
- Neodymium(III) fluoride – NdF3
- Neodymium(III) hydride – NdH3
- Neodymium(II) iodide – NdI2
- Neodymium(III) iodide – NdI3
- Neodymium molybdate – Nd2(MoO4)3
- Neodymium perrhenate – Nd(ReO4)3
- Neodymium(III) sulfide – Nd2S3
- Neodymium tantalate – NdTaO4
- Neodymium(III) vanadate – NdVO4
- Neptunium(III) fluoride – NpF3
- Neptunium(IV) fluoride – NpF4
- Neptunium(IV) oxide – NpO2
- Neptunium(VI) fluoride – NpF6
- Nickel(II) carbonate – NiCO3
- Nickel(II) chloride – NiCl2
- Nickel(II) fluoride – NiF2
- Nickel(II) hydroxide – Ni(OH)2
- Nickel(II) nitrate – Ni(NO3)2
- Nickel(II) oxide – NiO
- Nickel(II) sulfamate – Ni(SO3NH2)2
- Nickel(II) sulfide – NiS
- Niobium(IV) fluoride – NbF4
- Niobium(V) fluoride – NbF5
- Niobium oxychloride – NbOCl3
- Niobium pentachloride – NbCl5
- Dinitrogen pentoxide (nitronium nitrate) – N2O5
- Dinitrogen tetrafluoride – N2F4
- Dinitrogen tetroxide – N2O4
- Dinitrogen trioxide – N2O3
- Nitric acid – HNO3
- Nitrous acid – HNO2
- Nitrogen dioxide – NO2
- Nitrogen monoxide – NO
- Nitrous oxide (dinitrogen monoxide, laughing gas, NOS) – N2O
- Nitrogen pentafluoride – NF5
- Nitrogen triiodide – NI3
NO
[edit]- Nitrosonium octafluoroxenate(VI) – (NO)2XeF8
- Nitrosonium tetrafluoroborate – NOBF4
- Nitrosylsulfuric acid – NOHSO4
O
[edit]- Osmium hexafluoride – OsF6
- Osmium tetroxide (osmium(VIII) oxide) – OsO4
- Osmium trioxide (osmium(VI) oxide) – OsO3
- Tributyltin – C24H54OSn2
- Oxygen difluoride – OF2
- Ozone – O3
- Aluminium oxide – Al2O3
- Americium(II) oxide – AmO
- Americium(IV) oxide – AmO2
- Antimony trioxide – Sb2O3
- Antimony(V) oxide – Sb2O5
- Arsenic trioxide – As2O3
- Arsenic(V) oxide – As2O5
- Barium oxide – BaO
- Beryllium oxide – BeO
- Bismuth(III) oxide – Bi2O3
- Bismuth oxychloride – BiOCl
- Boron trioxide – B2O3
- Bromine monoxide – Br2O
- Carbon dioxide – CO2
- Carbon monoxide – CO
- Cerium(IV) oxide – CeO2
- Chlorine dioxide – ClO2
- Chlorine trioxide – ClO3
- Dichlorine heptaoxide – Cl2O7
- Dichlorine monoxide – Cl2O
- Chromium(III) oxide – Cr2O3
- Chromium(IV) oxide – CrO2
- Chromium(VI) oxide – CrO3
- Cobalt(II) oxide – CoO
- Copper(I) oxide – Cu2O
- Copper(II) oxide – CuO
- Curium(III) oxide – Cm2O3
- Curium(IV) oxide – CmO2
- Dysprosium(III) oxide – Dy2O3
- Erbium(III) oxide – Er2O3
- Europium(III) oxide – Eu2O3
- Oxygen difluoride – OF2
- Dioxygen difluoride – O2F2
- Francium oxide – Fr2O
- Gadolinium(III) oxide – Gd2O3
- Gallium(III) oxide – Ga2O3
- Germanium dioxide – GeO2
- Gold(III) oxide – Au2O3
- Hafnium dioxide – HfO2
- Holmium(III) oxide – Ho2O3
- Indium(I) oxide – In2O
- Indium(III) oxide – In2O3
- Iodine pentoxide – I2O5
- Iridium(IV) oxide – IrO2
- Iron(II) oxide – FeO
- Iron(II,III) oxide – Fe3O4
- Iron(III) oxide – Fe2O3
- Lanthanum(III) oxide – La2O3
- Lead(II) oxide – PbO
- Lead dioxide – PbO2
- Lithium oxide – Li2O
- Magnesium oxide – MgO
- Potassium oxide – K2O
- Rubidium oxide – Rb2O
- Sodium oxide – Na2O
- Strontium oxide – SrO
- Tellurium dioxide – TeO2
- Uranium(IV) oxide – UO2
(only simple oxides, oxyhalides, and related compounds, not hydroxides, carbonates, acids, or other compounds listed elsewhere)
P
[edit]- Palladium(II) chloride – PdCl2
- Palladium(II) nitrate – Pd(NO3)2
- Palladium(II,IV) fluoride – PdF3
- Palladium sulfate – PdSO4[208]
- Palladium tetrafluoride – PdF4
- Diphosphorus tetrachloride – P2Cl4
- Diphosphorus tetrafluoride – P2F4
- Diphosphorus tetraiodide – P2I4
- Hexachlorophosphazene – (NPCl2)3
- Phosphine – PH3
- Phosphomolybdic acid – H3PMo12O40
- Phosphoric acid – H3PO4
- Phosphorous acid (Phosphoric(III) acid) – H3PO3
- Phosphoroyl nitride – NPO
- Phosphorus pentabromide – PBr5
- Phosphorus pentafluoride – PF5
- Phosphorus pentasulfide – P4S10
- Phosphorus pentoxide – P2O5
- Phosphorus sesquisulfide – P4S3
- Phosphorus tribromide – PBr3
- Phosphorus trichloride – PCl3
- Phosphorus trifluoride – PF3
- Phosphorus triiodide – PI3
- Phosphotungstic acid – H3PW12O40
- Poly(dichlorophosphazene) – (NPCl2)n
- Platinum(II) chloride – PtCl2
- Platinum(IV) chloride – PtCl4
- Platinum hexafluoride – PtF6
- Platinum pentafluoride – PtF5
- Platinum tetrafluoride – PtF4
- Plutonium(III) bromide – PuBr3
- Plutonium(III) chloride – PuCl3
- Plutonium(III) fluoride – PuF3
- Plutonium(III) iodide – PuI3
- Plutonium dihydride – PuH2+x
- Plutonium dioxide (Plutonium(IV) oxide) – PuO2
- Plutonium hexafluoride – PuF6
- Plutonium tetrafluoride – PuF4
- Plutonium trihydride – PuH3
- Polonium hexafluoride – PoF6
- Polonium monoxide – PoO
- Polonium dioxide – PoO2
- Polonium trioxide – PoO3
- Di-positronium – Ps2
- Positronium hydride – PsH
- Potash Alum – K2SO4·Al2(SO4)3·24H2O
- Potassium alum – AlK(SO4)2
- Potassium aluminium fluoride – KAlF4
- Potassium amide – KNH2
- Potassium argentocyanide – KAg(CN)2
- Potassium arsenite – KAsO2
- Potassium azide – KN3
- Potassium borate – K2B4O7·4H2O
- Potassium bromide – KBr
- Potassium bicarbonate – KHCO3
- Potassium bifluoride – KHF2
- Potassium bisulfite – KHSO3
- Potassium carbonate – K2CO3
- Potassium calcium chloride – KCaCl3
- Potassium chlorate – KClO3
- Potassium chloride – KCl
- Potassium chlorite – KClO2
- Potassium chromate – K2CrO4
- Potassium cyanide – KCN
- Potassium dichromate – K2Cr2O7
- Potassium dithionite – K2S2O4
- Potassium ferrate – K2FeO4
- Potassium ferrioxalate – K3[Fe(C2O4)3]
- Potassium ferricyanide – K3[Fe(CN)6]
- Potassium ferrocyanide – K4[Fe(CN)6]
- Potassium heptafluorotantalate – K2[TaF7]
- Potassium hexafluorophosphate – KPF6
- Potassium hydrogen carbonate – KHCO3
- Potassium hydrogen fluoride – KHF2
- Potassium hydroxide – KOH
- Potassium iodide – KI
- Potassium iodate – KIO3
- Potassium manganate – K2MnO4
- Potassium monopersulfate – K2SO4·KHSO4·2KHSO5
- Potassium nitrate – KNO3
- Potassium perbromate – KBrO4
- Potassium perchlorate – KClO4
- Potassium periodate – KIO4
- Potassium permanganate – KMnO4
- Potassium sodium tartrate – KNaC4H4O6
- Potassium sulfate – K2SO4
- Potassium sulfite – K2SO3
- Potassium sulfide – K2S
- Potassium tartrate – K2C4H4O6
- Potassium tetrachloroiodate(III) – KICl4
- Potassium tetraiodomercurate(II) – K2HgI4
- Potassium thiocyanate – KSCN
- Potassium titanyl phosphate – KTiOPO4
- Potassium vanadate – KVO3
- Tripotassium phosphate – K3PO4
- Praseodymium(III) chloride – PrCl3
- Praseodymium(III) sulfate – Pr2(SO4)3
- Praseodymium(III) bromide – PrBr3
- Praseodymium(III) carbonate – Pr2(CO3)3
- Praseodymium(III) chloride – PrCl3
- Praseodymium(III) fluoride – PrF3
- Praseodymium(III) iodide – PrI3
- Praseodymium(III) nitrate – Pr(NO3)3
- Praseodymium(III) oxide – Pr2O3
- Praseodymium(III) phosphate – PrPO4
- Praseodymium(III) sulfate – Pr2(SO4)3
- Praseodymium(III) sulfide – Pr2S3
- Promethium(III) chloride – PmCl3
- Promethium(III) oxide – Pm2O3
- Promethium(III) bromide – PmBr3
- Promethium(III) carbonate – Pm2(CO3)3
- Promethium(III) chloride – PmCl3
- Promethium(III) fluoride – PmF3
- Promethium(III) iodide – PmI3
- Promethium(III) nitrate – Pm(NO3)3
- Promethium(III) oxide – Pm2O3
- Promethium(III) phosphate – PmPO4
- Promethium(III) sulfate – Pm2(SO4)3
- Promethium(III) sulfide – Pm2S3
R
[edit]- Radium bromide – RaBr2
- Radium carbonate – RaCO3
- Radium chloride – RaCl2
- Radium fluoride – RaF2
- Radon difluoride – RnF2
- Rhenium(IV) oxide – ReO2
- Rhenium(VII) oxide – Re2O7
- Rhenium heptafluoride – ReF7
- Rhenium hexafluoride – ReF6
- Rhodium hexafluoride – RhF6
- Rhodium pentafluoride – Rh4F20
- Rhodium(III) chloride – RhCl3
- Rhodium(III) hydroxide – Rh(OH)3
- Rhodium(III) iodide – RhI3
- Rhodium(III) nitrate – Rh(NO3)3
- Rhodium(III) oxide – Rh2O3
- Rhodium(III) sulfate – Rh2(SO4)6
- Rhodium(III) sulfide – Rh2S3
- Rhodium(IV) fluoride – RhF4
- Rhodium(IV) oxide – RhO2
- Rubidium azide – RbN3
- Rubidium bromide – RbBr
- Rubidium chloride – RbCl
- Rubidium fluoride – RbF
- Rubidium hydrogen sulfate – RbHSO4
- Rubidium hydroxide – RbOH
- Rubidium iodide – RbI
- Rubidium nitrate – RbNO3
- Rubidium oxide – Rb2O
- Rubidium telluride – Rb2Te
- Rubidium titanyl phosphate — RbTiOPO4
- Ruthenium hexafluoride – RuF6
- Ruthenium pentafluoride – RuF5
- Ruthenium(VIII) oxide – RuO4
- Ruthenium(III) chloride – RuCl3
- Ruthenium(IV) oxide – RuO2
S
[edit]- Samarium(II) iodide – SmI2
- Samarium(III) chloride – SmCl3
- Samarium(III) oxide – Sm2O3
- Samarium(III) bromide – SmBr3
- Samarium(III) carbonate – Sm2(CO3)3
- Samarium(III) fluoride – SmF3
- Samarium(III) iodide – SmI3
- Samarium(III) nitrate – Sm(NO3)3
- Samarium(III) oxide – Sm2O3
- Samarium(III) phosphate – SmPO4
- Samarium(III) sulfate – Sm2(SO4)4
- Samarium(III) sulfide – Sm2S3
- Scandium(III) fluoride – ScF3
- Scandium(III) nitrate – Sc(NO3)3
- Scandium(III) oxide – Sc2O3
- Scandium(III) triflate – Sc(OSO2CF3)3
- Seaborgium hexacarbonyl – Sg(CO)6
- Selenic acid – H2SeO4
- Selenious acid – H2SeO3
- Selenium dibromide – SeBr2
- Selenium dioxide – SeO2
- Selenium disulfide – SeS2
- Selenium hexafluoride – SeF6
- Selenium hexasulfide – Se2S6
- Selenium oxybromide – SeOBr2
- Selenium oxydichloride – SeOCl2
- Selenium tetrachloride – SeCl4
- Selenium tetrafluoride – SeF4
- Selenium trioxide – SeO3
- Selenoyl fluoride – SeO2F2
- Disilane – Si2H6
- Silane – SiH4
- Silica gel – SiO2·nH2O
- Silicic acid – Si(OH)4
- Silicochloroform, trichlorosilane – SiHCl3
- Silicofluoric acid – H2SiF6
- Silicon boride – SiB3
- Silicon carbide (carborundum) – SiC
- Silicon dioxide – SiO2
- Silicon monoxide – SiO
- Silicon nitride – Si3N4
- Silicon tetrabromide – SiBr4
- Silicon tetrachloride – SiCl4
- Silicon tetrafluoride – SiF4
- Silicon tetraiodide – SiI4
- Thortveitite – (Sc,Y)2Si2O7
- Silver(I) fluoride – AgF
- Silver(II) fluoride – AgF2
- Silver acetylide – Ag2C2
- Silver argentocyanide – KAg(CN)2
- Silver azide – AgN3
- Silver bromate – AgBrO3
- Silver bromide – AgBr
- Silver chlorate – AgClO3
- Silver chloride – AgCl
- Silver chromate – Ag2CrO4
- Silver fluoroborate – AgBF4
- Silver fulminate – AgCNO
- Silver hydroxide – AgOH
- Silver iodide – AgI
- Silver nitrate – AgNO3
- Silver nitride – Ag3N
- Silver oxide – Ag2O
- Silver perchlorate – AgClO4
- Silver permanganate – AgMnO4
- Silver phosphate (silver orthophosphate) – Ag3PO4
- Silver subfluoride – Ag2F
- Silver sulfate – Ag2SO4
- Silver sulfide – Ag2S
- Sodamide – NaNH2
- Sodium aluminate – NaAlO2
- Sodium arsenate – H24Na3AsO16
- Sodium azide – NaN3
- Sodium bicarbonate – NaHCO3
- Sodium biselenide – NaSeH
- Sodium bisulfate – NaHSO4
- Sodium bisulfite – NaHSO3
- Sodium borate – Na2B4O7
- Sodium borohydride – NaBH4
- Sodium bromate – NaBrO3
- Sodium bromide – NaBr
- Sodium bromite – NaBrO2
- Sodium carbide – Na2C2
- Sodium carbonate – Na2CO3
- Sodium chlorate – NaClO3
- Sodium chloride – NaCl
- Sodium chlorite – NaClO2
- Sodium cobaltinitrite – CoN6Na3O12[209]
- Sodium copper tetrachloride – Na2CuCl4
- Sodium cyanate – NaCNO
- Sodium cyanide – NaCN
- Sodium dichromate – Na2Cr2O7·2H2O
- Sodium dioxide – NaO2
- Sodium dithionite – Na2S2O4
- Sodium ferrocyanide – Na4[Fe(CN)6]
- Sodium fluoride – NaF
- Sodium fluorosilicate – Na2[SiF6]
- Sodium formate – HCOONa
- Sodium hydride – NaH
- Sodium hydrogen carbonate (Sodium bicarbonate) – NaHCO3
- Sodium hydrosulfide – NaSH
- Sodium hydroxide – NaOH
- Sodium hypobromite – NaOBr
- Sodium hypochlorite – NaOCl
- Sodium hypoiodite – NaOI
- Sodium hypophosphite – NaPO2H2
- Sodium iodate – NaIO3
- Sodium iodide – NaI
- Sodium manganate – Na2MnO4
- Sodium molybdate – Na2MoO4
- Sodium monofluorophosphate (MFP) – Na2PFO3
- Sodium nitrate – NaNO3
- Sodium nitrite – NaNO2
- Sodium nitroprusside – Na2[Fe(CN)5NO]·2H2O
- Sodium oxide – Na2O
- Sodium perborate – NaBO3·H2O
- Sodium perbromate – NaBrO4
- Sodium percarbonate – 2Na2CO3·3H2O2
- Sodium perchlorate – NaClO4
- Sodium periodate – NaIO4
- Sodium permanganate – NaMnO4
- Sodium peroxide – Na2O2
- Sodium peroxycarbonate – Na2CO4
- Sodium perrhenate – NaReO4
- Sodium persulfate – Na2S2O8
- Sodium phosphate; see trisodium phosphate – Na3PO4
- Sodium selenate – Na2O4Se
- Sodium selenide – Na2Se
- Sodium selenite – Na2SeO3
- Sodium silicate – Na2SiO3
- Sodium sulfate – Na2SO4
- Sodium sulfide – Na2S
- Sodium sulfite – Na2SO3
- Sodium tartrate – C4H4Na2O6
- Sodium tellurite – Na2TeO3
- Sodium tetrachloroaluminate – NaAlCl4
- Sodium tetrafluoroborate – NaBF4
- Sodium thioantimoniate – Na3(SbS4)·9H2O
- Sodium thiocyanate – NaSCN
- Sodium thiosulfate – Na2S2O3
- Sodium tungstate – Na2WO4
- Sodium uranate – Na2O7U2
- Sodium zincate – H4Na2O4Zn[210]
- Trisodium phosphate – Na3PO4
- Strontium bromide – SrBr2
- Strontium carbonate – SrCO3
- Strontium chloride – SrCl2
- Strontium fluoride – SrF2
- Strontium hydroxide – Sr(OH)2
- Strontium iodide – SrI2
- Strontium nitrate – Sr(NO3)2
- Strontium oxide – SrO
- Strontium titanate – SrTiO3
- Strontium bicarbonate – Sr(HCO3)2
- Strontium boride – SrB6
- Strontium bromide – SrBr2
- Strontium carbide – SrC2
- Strontium carbonate – SrCO3
- Strontium chloride – SrCl2
- Strontium cyanamide – SrCN2
- Strontium fluoride – SrF2
- Strontium fluorophosphate – SrPO3F
- Strontium gluconate – Sr(HOCH2(CHOH)4CO2)2
- Strontium hydride – SrH2
- Strontium hydrogen phosphate – SrHPO4
- Strontium hydroxide – Sr(OH)2
- Strontium hypochlorite – Sr(OCl)2
- Strontium iodide – SrI2
- Strontium molybdate – SrMoO4
- Strontium nitrate – Sr(NO3)2
- Strontium oxalate – SrC2O4
- Strontium oxide – SrO
- Strontium peroxide – SrO2
- Strontium phosphate – Sr3(PO4)2
- Strontium silicate – SrSiO3
- Strontium sulfate – SrSO4
- Strontium sulfide – SrS
- Strontium titanate – SrTiO3
- Strontium tungstate – SrWO4
- Strontium zirconate – SrZrO3
- Disulfur decafluoride – S2F10
- Disulfur dichloride – S2Cl2
- Hydrogen sulfide (sulfane) – H2S
- Pyrosulfuric acid – H2S2O7
- Sulfamic acid – H3NO3S
- Sulfur dibromide – Br2S
- Sulfur dioxide – SO2
- Sulfur hexafluoride – SF6
- Sulfur tetrafluoride – SF4
- Sulfuric acid – H2SO4
- Sulfurous acid – H2SO3
- Sulfuryl chloride – SO2Cl2
- Tetrasulfur tetranitride – S4N4
- Persulfuric acid (Caro's acid) – H2SO5
T
[edit]- Tantalum arsenide – TaAs
- Tantalum carbide – TaC
- Tantalum pentafluoride – TaF5
- Tantalum(V) oxide – Ta2O5
- Technetium hexafluoride – TcF6
- Ammonium pertechnetate – NH4TcO4
- Sodium pertechnetate – NaTcO4
- Ditellurium bromide – Te2Br
- Telluric acid – H6TeO6
- Tellurium dioxide – TeO2
- Tellurium hexafluoride – TeF6
- Tellurium tetrabromide – TeBr4
- Tellurium tetrachloride – TeCl4
- Tellurium tetrafluoride – TeF4
- Tellurium tetraiodide – TeI4
- Tellurous acid – H2TeO3
- Beryllium telluride – BeTe
- Bismuth telluride – Bi2Te3
- Cadmium telluride – CdTe
- Cadmium zinc telluride – (Cd,Zn)Te
- Dimethyltelluride – (CH3)2Te
- Mercury Cadmium Telluride – (Hg,Cd)Te
- Lead telluride – PbTe
- Mercury telluride – HgTe
- Mercury zinc telluride – (Hg,Zn)Te
- Silver telluride – Ag2Te
- Tin telluride – SnTe
- Zinc telluride – ZnTe
- Teflic acid – HOTeF5
- Telluric acid – H6TeO6
- Sodium tellurite – Na2TeO3
- Tellurium dioxide – TeO2
- Tellurium hexafluoride – TeF6
- Tellurium tetrafluoride – TeF4
- Tellurium tetrachloride – TeCl4
- Terbium(III) chloride – TbCl3
- Terbium(III) bromide – TbBr3
- Terbium(III) carbonate – Tb2(CO3)3
- Terbium(III) chloride – TbCl3
- Terbium(III) fluoride – TbF3
- Terbium(III) iodide – TbI3
- Terbium(III) nitrate – Tb(NO3)3
- Terbium(III) oxide – Tb2O3
- Terbium(III) phosphate – TbPO4
- Terbium(III) sulfate – Tb2(SO4)3
- Terbium(III) sulfide – Tb2S3
- Thallium(I) bromide – TlBr
- Thallium(I) carbonate – Tl2CO3
- Thallium(I) fluoride – TlF
- Thallium(I) sulfate – Tl2SO4
- Thallium(III) oxide – Tl2O3
- Thallium(III) sulfate – Tl2(SO4)3
- Thallium triiodide – TlI3
- Thallium antimonide – TlSb
- Thallium arsenide – TlAs
- Thallium(III) bromide – TlBr3
- Thallium(III) chloride – TlCl3
- Thallium(III) fluoride – TlF3
- Thallium(I) iodide – TlI
- Thallium(III) nitrate – Tl(NO3)3
- Thallium(I) oxide – Tl2O
- Thallium(III) oxide – Tl2O3
- Thallium phosphide – TlP
- Thallium(III) selenide – Tl2Se3
- Thallium(III) sulfate – Tl2(SO4)3
- Thallium(III) sulfide – Tl2S3
- TrimethylThallium – Tl(CH3)3
- Thallium(I) hydroxide – TlOH
SO
[edit]- Thionyl chloride – SOCl2
- Thionyl tetrafluoride – SOF4
ClS
[edit]- Thiophosgene – CSCl2
- Thiophosphoryl chloride – Cl3PS
- Thorium(IV) nitrate – Th(NO3)4
- Thorium(IV) sulfate – Th(SO4)2
- Thorium dioxide – ThO2
- Thorium tetrafluoride – ThF4
- Thulium(III) bromide – TmBr3
- Thulium(III) chloride – TmCl3
- Thulium(III) oxide – Tm2O3
- Stannane – SnH4
- Tin(II) bromide – SnBr2
- Tin(II) chloride (stannous chloride) – SnCl2
- Tin(II) fluoride – SnF2
- Tin(II) hydroxide – Sn(OH)2
- Tin(II) iodide – SnI2
- Tin(II) oxide – SnO
- Tin(II) sulfate – SnSO4
- Tin(II) sulfide – SnS
- Tin(IV) bromide – SnBr4
- Tin(IV) chloride – SnCl4
- Tin(IV) fluoride – SnF4
- Tin(IV) iodide – SnI4
- Tin(IV) oxide – SnO2
- Tin(IV) sulfide – SnS2
- Tin(IV) cyanide – Sn(CN)4
- Tin selenide – SnSe2
- Tin telluride – SnTe
- Hexafluorotitanic acid – (H3O)2[TiF6]
- Titanium(II) chloride – TiCl2
- Titanium(II) oxide – TiO
- Titanium(II) sulfide – TiS
- Titanium(III) bromide – TiBr3
- Titanium(III) chloride – TiCl3
- Titanium(III) fluoride – TiF3
- Titanium(III) iodide – TiI3
- Titanium(III) oxide – Ti2O3
- Titanium(III) phosphide – TiP
- Titanium(IV) bromide (titanium tetrabromide) – TiBr4
- Titanium(IV) carbide – TiC
- Titanium(IV) chloride (titanium tetrachloride) – TiCl4
- Titanium(IV) hydride – TiH4
- Titanium(IV) iodide (titanium tetraiodide) – TiI4
- Titanium carbide – TiC
- Titanium diboride – TiB2
- Titanium dioxide (titanium(IV) oxide) – TiO2
- Titanium diselenide – TiSe2
- Titanium disilicide – TiSi2
- Titanium disulfide – TiS2
- Titanium nitrate – Ti(NO3)4
- Titanium nitride – TiN
- Titanium perchlorate – Ti(ClO4)4
- Titanium silicon carbide – Ti3SiC2
- Titanium tetrabromide – TiBr4
- Titanium tetrafluoride – TiF4
- Titanium tetraiodide – TiI4
TiO
[edit]- Titanyl sulfate – TiOSO4
- Tungsten(VI) chloride – WCl6
- Tungsten(VI) fluoride – WF6
- Tungsten boride – WB2
- Tungsten carbide – WC
- Tungstic acid – H2WO4
- Tungsten hexacarbonyl – W(CO)6
U
[edit]- Triuranium octaoxide (pitchblende or yellowcake) – U3O8
- Uranium hexafluoride – UF6
- Uranium pentafluoride – UF5
- Uranium sulfate – U(SO4)2
- Uranium tetrachloride – UCl4
- Uranium tetrafluoride – UF4
- Uranium(III) chloride – UCl3
- Uranium(IV) chloride – UCl4
- Uranium(V) chloride – UCl5
- Uranium hexachloride – UCl6
- Uranium(IV) fluoride – UF4
- Uranium pentafluoride – UF5
- Uranium(VI) fluoride – UF6
- Uranyl peroxide – UO4
- Uranium dioxide – UO2
UO2
[edit]- Uranyl carbonate – UO2CO3
- Uranyl chloride – UO2Cl2
- Uranyl fluoride – UO2F2
- Uranyl hydroxide – UO2(OH)2
- Uranyl hydroxide – (UO2)2(OH)4
- Uranyl nitrate – UO2(NO3)2
- Uranyl sulfate – UO2SO4
V
[edit]- Vanadium(II) chloride – VCl2
- Vanadium(II) oxide – VO
- Vanadium(III) bromide – VBr3
- Vanadium(III) chloride – VCl3
- Vanadium(III) fluoride – VF3
- Vanadium(III) nitride – VN
- Vanadium(III) oxide – V2O3
- Vanadium(IV) chloride – VCl4
- Vanadium(IV) fluoride – VF4
- Vanadium(IV) oxide – VO2
- Vanadium(IV) sulfate – VOSO4
- Vanadium(V) oxide – V2O5
- Vanadium carbide – VC
- Vanadium oxytrichloride (Vanadium(V) oxide trichloride) – VOCl3
- Vanadium pentafluoride – VF5
- Vanadium tetrachloride – VCl4
- Vanadium tetrafluoride – VF4
W
[edit]- Water – H2O
X
[edit]- Perxenic acid – H4XeO6
- Xenon difluoride – XeF2
- Xenon hexafluoride – XeF6
- Xenon hexafluoroplatinate – Xe[PtF6]
- Xenon tetrafluoride – XeF4
- Xenon tetroxide – XeO4
- Xenic acid – H2XeO4
Y
[edit]- Ytterbium(III) chloride – YbCl3
- Ytterbium(III) oxide – Yb2O3
- Ytterbium(III) sulfate – Yb2(SO4)3
- Ytterbium(III) bromide – YbBr3
- Ytterbium(III) carbonate – Yb2(CO3)3
- Ytterbium(III) chloride – YbCl3
- Ytterbium(III) fluoride – YbF3
- Ytterbium(III) iodide – YbI3
- Ytterbium(III) nitrate – Yb(NO3)3
- Ytterbium(III) oxide – Yb2O3
- Ytterbium(III) phosphate – YbPO4
- Ytterbium(III) sulfate – Yb2(SO4)3
- Ytterbium(III) sulfide – Yb2S3
- Yttrium(III) antimonide – YSb
- Yttrium(III) arsenate – YAsO4
- Yttrium(III) arsenide – YAs
- Yttrium(III) bromide – YBr3
- Yttrium(III) fluoride – YF3
- Yttrium(III) oxide – Y2O3
- Yttrium(III) nitrate – Y(NO3)3
- Yttrium(III) sulfide – Y2S3
- Yttrium(III) sulfate – Y2(SO4)3
- Yttrium aluminium garnet – Y3Al5O12
- Yttrium barium copper oxide – YBa2Cu3O7
- Yttrium cadmium – YCd
- Yttrium copper – YCu
- Yttrium gold – YAu
- Yttrium iridium – YIr
- Yttrium iron garnet – Y3Fe5O12
- Yttrium magnesium – YMg
- Yttrium phosphate – YPO4
- Yttrium phosphide – YP
- Yttrium rhodium – YRh
- Yttrium silver – YAg
- Yttrium zinc – YZn
Z
[edit]- Zinc arsenide – Zn3As2
- Zinc bromide – ZnBr2
- Zinc carbonate – ZnCO3
- Zinc chloride – ZnCl2
- Zinc cyanide – Zn(CN)2
- Zinc diphosphide – ZnP2
- Zinc fluoride – ZnF2
- Zinc iodide – ZnI2
- Zinc nitrate – Zn(NO3)2
- Zinc oxide – ZnO
- Zinc phosphide – Zn3P2
- Zinc pyrophosphate – Zn2P2O7
- Zinc selenate – ZnSeO4
- Zinc selenide – ZnSe
- Zinc selenite – ZnSeO3
- Zinc selenocyanate – Zn(SeCN)2
- Zinc sulfate – ZnSO4
- Zinc sulfide – ZnS
- Zinc sulfite – ZnSO3
- Zinc telluride – ZnTe
- Zinc thiocyanate – Zn(SCN)2
- Zinc tungstate – ZnWO4
- Zirconia hydrate – ZrO2·nH2O
- Zirconium boride – ZrB2
- Zirconium carbide – ZrC
- Zirconium(IV) chloride – ZrCl4
- Zirconium(IV) oxide – ZrO2
- Zirconium hydroxide – Zr(OH)4
- Zirconium orthosilicate – ZrSiO4
- Zirconium nitride – ZrN
- Zirconium tetrafluoride – ZrF4
- Zirconium tetrahydroxide – H4O4Zr
- Zirconium tungstate – ZrW2O8
- Zirconyl bromide – ZrOBr2
- Zirconyl chloride – ZrOCl2
- Zirconyl nitrate – ZrO(NO3)2
- Zirconyl sulfate – ZrOSO4
- Zirconium dioxide – ZrO2
- Zirconium nitride – ZrN
- Zirconium tetrachloride – ZrCl4
- Zirconium(IV) sulfide – ZrS2
- Zirconium(IV) silicide – ZrSi2
- Zirconium(IV) silicate – ZrSiO4
- Zirconium(IV) fluoride – ZrF4
- Zirconium(IV) bromide – ZrBr4
- Zirconium(IV) iodide – ZrI4
- Zirconium(IV) hydroxide – Zr(OH)4
- Schwartz's reagent – C10H11ClZr
- Zirconium propionate – Zr(CH3CH2COO)4
- Zirconium tungstate – Zr(WO4)2
- Zirconium(II) hydride – ZrH2
- Lead zirconate titanate – Pb(ZrxTi1−xO3)
See also
[edit]References
[edit]- ^ PubChem. "Actinium chloride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Actinium fluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ Guéneau, Christine; Chartier, Alain; Fossati, Paul; Van Brutzel, Laurent; Martin, Philippe (2020-01-01), Konings, Rudy J. M.; Stoller, Roger E. (eds.), "7.03 - Thermodynamic and Thermophysical Properties of the Actinide Oxides☆", Comprehensive Nuclear Materials (Second Edition), Oxford: Elsevier, pp. 111–154, ISBN 978-0-08-102866-7, retrieved 2022-11-18
- ^ Elements, American. "Aluminum Antimonide". American Elements. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum antimonide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminium arsenate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum arsenide (AlAs)". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ Elements, American. "Aluminum Arsenide". American Elements. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum boride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ Elements, American. "Aluminum Boride". American Elements. Retrieved 2022-11-18.
- ^ a b PubChem. "Aluminum bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum carbide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum iodide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum nitride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum Oxide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum phosphide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum Chloride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum fluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ "Aluminum Hydroxide - an overview | ScienceDirect Topics". www.sciencedirect.com. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum hydroxide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminium nitrate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum sulfide (Al2S3)". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum Sulfate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Aluminum potassium sulfate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ "Aluminum hydride".
- ^ Penneman, R. A.; Keenan, T. K. (1960-01-01). The Radiochemistry of Americium and Curium. doi:10.2172/4187189. OSTI 4187189.
- ^ PubChem. "Americium(III) bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Americium(III) chloride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Americium(III) fluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Americium(IV) fluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ Baybarz, R. D.; Asprey, L. B.; Strouse, C. E.; Fukushima, E. (1972-11-01). "Divalent americium: The crystal structure and magnetic susceptibility of AmI2". Journal of Inorganic and Nuclear Chemistry. 34 (11): 3427–3431. doi:10.1016/0022-1902(72)80237-9. ISSN 0022-1902.
- ^ PubChem. "Americium(III) iodide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Americium dioxide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Ammonia". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-18.
- ^ PubChem. "Ammonium azide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium bicarbonate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium bisulfate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ a b PubChem. "Ammonium bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ PubChem. "Ammonium chromate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium Chloride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium chlorate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium cyanide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium dichromate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium hexafluoroaluminate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ PubChem. "Ammonium hexafluorophosphate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ PubChem. "Ammonium chloroplatinate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ PubChem. "Ammonium hexafluorosilicate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ PubChem. "Ammonium hexafluorotitanate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ PubChem. "Ammonium hexafluorozirconate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ PubChem. "Ammonium Hydroxide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium nitrate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium sulfamate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium sulfite". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium Sulfate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium perchlorate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium permanganate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium persulfate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium thiocyanate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Ammonium trio-triiodide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ ChemSpider ID:55491
- ^ PubChem. "Diammonium hydrogen phosphate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Stibine". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ PubChem. "Antimony pentachloride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ PubChem. "Antimony pentafluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ "Antimony Potassium Tartrate SDS (Safety Data Sheet) | Flinn Scientific". www.flinnsci.com. Retrieved 2022-11-19.
- ^ PubChem. "Antimony sulfate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ PubChem. "Antimony trichloride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ PubChem. "Antimony trifluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ "ANTIMONY TRIOXIDE | CAMEO Chemicals | NOAA". cameochemicals.noaa.gov. Retrieved 2022-11-19.
- ^ PubChem. "Antimonium crudum". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ PubChem. "Antimony(V) sulfide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ PubChem. "Argon-hydrogen fluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-01-19.
- ^ PubChem. "Arsenic trifluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ PubChem. "Arsenic triiodide". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-01-19.
- ^ "arsenic triiodide". webbook.nist.gov. Retrieved 2023-01-19.
- ^ "T3DB: Arsenic triiodide". www.t3db.ca. Retrieved 2023-01-19.
- ^ "Arsenic triiodide - Hazardous Agents | Haz-Map". haz-map.com. Retrieved 2023-01-19.
- ^ "7784-45-4 - Arsenic(III) iodide, 98% - Arsenic triiodide - 45067 - Alfa Aesar". www.alfa.com. Retrieved 2023-01-19.
- ^ "Arsenic triiodide | AsI3O | ChemSpider". www.chemspider.com. Retrieved 2023-01-19.
- ^ PubChem. "Arsenic pentafluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ PubChem. "Arsenic trioxide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ PubChem. "Arsenous acid". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ PubChem. "Arsenic acid". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ PubChem. "Arsine". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-19.
- ^ PubChem. "Barium azide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium carbonate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium chlorate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium chloride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium chromate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium ferrite". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium fluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ "barium hydroxide". webbook.nist.gov. Retrieved 2023-01-19.
- ^ PubChem. "Barium(2+) hydroxide". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-01-19.
- ^ "Barium iodide | BaI2 | ChemSpider". www.chemspider.com. Retrieved 2023-01-19.
- ^ Chase, M. W. (1998). "NIST-JANAF Themochemical Tables, Fourth Edition": 1–1951.
{{cite journal}}: Cite journal requires|journal=(help) - ^ Elements, American. "Barium Iodide". American Elements. Retrieved 2023-01-19.
- ^ PubChem. "Barium iodide (BaI2)". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-01-19.
- ^ PubChem. "Barium manganate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium nitrite". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium oxalate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium oxide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium permanganate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium peroxide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium Sulfate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium sulfide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium titanate(IV)". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Barium thiocyanate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Beryllium borohydride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Beryllium dibromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Beryllium carbonate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Beryllium chloride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Beryllium fluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Beryllium hydride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Beryllium hydroxide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Beryllium iodide [MI]". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Beryllium nitrate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ Chase, M. W. (1998). "NIST-JANAF Themochemical Tables, Fourth Edition": 1–1951.
{{cite journal}}: Cite journal requires|journal=(help) - ^ Elements, American. "Beryllium Nitride". American Elements. Retrieved 2022-11-23.
- ^ PubChem. "Beryllium oxide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Beryllium sulfate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ Chase, M. W. (1998). "NIST-JANAF Themochemical Tables, Fourth Edition": 1–1951.
{{cite journal}}: Cite journal requires|journal=(help) - ^ "Beryllium sulfide | BeS | ChemSpider". www.chemspider.com. Retrieved 2022-11-23.
- ^ Elements, American. "Beryllium Sulfide". American Elements. Retrieved 2022-11-23.
- ^ PubChem. "Beryllium sulfide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ PubChem. "Beryllium telluride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Bismuth trichloride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ Huaman, Jose Luis Clabel; Rivera, Victor Anthony Garcia (16 November 2022). Bismuth Ferrite - an overview | ScienceDirect Topics. ISBN 9780323905862. Retrieved 2022-11-23.
- ^ Elements, American. "Bismuth Ferrite". American Elements. Retrieved 2022-11-23.
- ^ PubChem. "Bismuth hydrate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Bismuth iodide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Bismuth nitrate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Bismuth oxide (BiO2)". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Bismuth oxychloride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Bismuth pentafluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Bismuth sulfide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ a b PubChem. "Bi2Te3 Crystal". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Bismuthine, tribromo-". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ Stull, Daniel R. (1947). "Vapor Pressure of Pure Substances. Organic and Inorganic Compounds". Industrial & Engineering Chemistry. 39 (4): 517–540. doi:10.1021/ie50448a022.
- ^ PubChem. "Borane". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Borax". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Borazine". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "(3Z,5Z,7Z)-azaborocine". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Boric Acid". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Boron carbide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Boron nitride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ An, Qi; Reddy, K. Madhav; Dong, Huafeng; Chen, Ming-Wei; Oganov, Artem R.; Goddard, William A. (2016-07-13). "Nanotwinned Boron Suboxide (B 6 O): New Ground State of B 6 O". Nano Letters. 16 (7): 4236–4242. Bibcode:2016NanoL..16.4236A. doi:10.1021/acs.nanolett.6b01204. ISSN 1530-6984. PMID 27253270.
- ^ a b PubChem. "Boron tribromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ PubChem. "Boron trichloride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Boron trifluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Boron triiodide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ PubChem. "Boric anhydride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Boroxine". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ "Decaborane(14)". webbook.nist.gov. Retrieved 2022-11-23.
- ^ "Diborane | Medical Management Guidelines | Toxic Substance Portal | ATSDR". wwwn.cdc.gov. Retrieved 2022-11-23.
- ^ PubChem. "Diboron tetrafluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ PubChem. "Pentaborane". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ "Tetraborane". American Chemical Society. Retrieved 2022-11-23.
- ^ "Tetraborane(10)". webbook.nist.gov. Retrieved 2022-11-23.
- ^ PubChem. "Tetraborane(10)". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-23.
- ^ PubChem. "Bromine chloride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Bromine pentafluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Perbromic acid". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Bromic acid". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Bromine oxide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "Bromine pentafluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "Bromine trifluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ PubChem. "Bromine monofluoride". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "Calcium bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "Carbon tetrabromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "Copper(I) bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "Copper(II) bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "Hydrogen bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "Hypobromous acid". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "Iodine monobromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "Ferrous bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "iron(III)bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "Lead dibromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-24.
- ^ PubChem. "Lithium bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ PubChem. "Magnesiumbromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ PubChem. "Mercury bromide (Hg2Br2)". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ Elements, American. "Mercury Bromide". American Elements. Retrieved 2022-12-22.
- ^ PubChem. "Mercuric bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ PubChem. "Nitrosyl bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ PubChem. "Phosphorus pentabromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ PubChem. "Phosphorus tribromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ PubChem. "Phosphorus heptabromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ PubChem. "Potassium bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ PubChem. "Potassium bromate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ PubChem. "Potassium Perbromate". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ PubChem. "Tribromosilane". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ PubChem. "Tetrabromosilane". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-12-22.
- ^ PubChem. "Silver bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-01-20.
- ^ "Bromine | Properties, Uses, & Facts | Britannica". www.britannica.com. Retrieved 2023-01-20.
- ^ Sambhy, Varun; MacBride, Megan M.; Peterson, Blake R.; Sen, Ayusman (2006-08-01). "Silver Bromide Nanoparticle/Polymer Composites: Dual Action Tunable Antimicrobial Materials". Journal of the American Chemical Society. 128 (30): 9798–9808. Bibcode:2006JAChS.128.9798S. doi:10.1021/ja061442z. ISSN 0002-7863. PMID 16866536.
- ^ "silver bromide". webbook.nist.gov. Retrieved 2023-01-20.
- ^ "sodium bromide". webbook.nist.gov. Retrieved 2023-01-20.
- ^ PubChem. "Sodium bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-01-20.
- ^ PubChem. "Sodium bromate". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-01-20.
- ^ PubChem. "Sodium perbromate". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-01-20.
- ^ PubChem. "Thionyl bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-01-20.
- ^ PubChem. "Tin(II) bromide". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-01-20.
- ^ PubChem. "Zinc bromide (ZnBr2)". pubchem.ncbi.nlm.nih.gov. Retrieved 2023-01-20.
- ^ Ziebel, Michael E.; Feuer, Margalit L.; Cox, Jordan; Zhu, Xiaoyang; Dean, Cory R.; Roy, Xavier (2024-04-17). "CrSBr: An Air-Stable, Two-Dimensional Magnetic Semiconductor". Nano Letters. 24 (15): 4319–4329. doi:10.1021/acs.nanolett.4c00624. ISSN 1530-6984.
- ^ ChemSpider ID:10142932
- ^ a b c Therald Moeller, Inorganic Chemistry, Asia Publishing House, 1958 edition, p. 474
- ^ PubChem. "Water". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-11-22.
- ^ ChemSpider ID:21169908
- ^ ChemSpider ID:145977
- ^ ChemSpider ID:13198283
- ^ ChemSpider ID:19990265
External links
[edit]- Inorganic Molecules made thinkable, an interactive visualisation showing inorganic compounds for an array of common metal and non-metal ions
List of inorganic compounds
View on Grokipediafrom Grokipedia
Hydrides
Metal hydrides
Metal hydrides encompass a class of binary compounds formed between metals and hydrogen, characterized primarily by ionic or interstitial bonding depending on the metal group. These compounds exhibit diverse properties, including high thermal stability in some cases and utility in hydrogen storage and chemical synthesis. Unlike the covalent bonding prevalent in non-metal hydrides, metal hydrides often display saline or metallic characteristics that enable applications in reducing atmospheres and material processing.[10] Alkali metal hydrides, such as lithium hydride (LiH), sodium hydride (NaH), and potassium hydride (KH), are typically synthesized through direct combination of the metal with hydrogen gas at elevated temperatures. [11] These compounds possess significant ionic character, manifesting as salt-like structures with high melting points—LiH at 698 °C, NaH at 638 °C, and KH around 400 °C—due to strong electrostatic interactions between metal cations and hydride anions.[10] Their stability decreases down group 1, with LiH exhibiting the highest thermal stability owing to better orbital overlap between lithium's 2s orbital and hydrogen's 1s orbital, while heavier analogs show mismatched energies leading to reduced cohesion.[12] Ionic character generally increases down the group as metal electropositivity rises, enhancing hydride ion affinity.[13] These hydrides serve as strong reducing agents in organic synthesis and laboratory practices, and their high hydrogen content supports applications in reversible hydrogen storage systems.[14]- Key alkali metal hydrides: LiH, NaH, KH, RbH, CsH.
- Key alkaline earth metal hydrides: BeH₂, MgH₂, CaH₂, SrH₂, BaH₂.
- Notable transition metal hydrides: TiH₂, ZrH₂, VH₂, NbH, PdH_{0.6}.
Non-metal hydrides
Non-metal hydrides, also known as covalent hydrides, are compounds formed between hydrogen and non-metallic elements from groups 15, 16, and 17 of the p-block. These molecular compounds exhibit covalent bonding with significant polarity due to the electronegativity difference between hydrogen and the central atom, leading to dipole moments that influence their physical properties such as volatility and solubility. Unlike ionic hydrides, which are typically solid and conductive, non-metal hydrides are gases or low-boiling liquids at room temperature and often display lone pairs on the central atom, enabling Lewis basicity or acidity depending on the group.[19][20]Group 15 Hydrides
The hydrides of group 15 elements, such as ammonia (NH₃) and phosphine (PH₃), are pyramidal molecules with a lone pair on the central nitrogen or phosphorus atom, resulting in bond angles around 107° for NH₃ and 94° for PH₃ due to VSEPR repulsion. Ammonia is synthesized industrially via the Haber-Bosch process, which combines nitrogen and hydrogen gases under high pressure (200–300 atm) and temperature (400–500°C) with an iron catalyst: This exothermic, equilibrium-limited reaction produces approximately 194 million tons of ammonia annually (as of 2025), primarily for fertilizers where NH₃ is converted to ammonium salts like NH₄NO₃ to provide essential nitrogen for plant growth.[21][22][23] Ammonia acts as a weak base in aqueous solution, accepting a proton to form the ammonium ion (NH₄⁺) with a pK_b of 4.75 (or pK_a of NH₄⁺ = 9.25), due to the high electronegativity of nitrogen creating a polar N–H bond that facilitates lone pair donation. Phosphine (PH₃) is prepared by hydrolysis of calcium phosphide: This reaction generates PH₃ as a toxic, flammable gas with a garlic-like odor, highly poisonous upon inhalation as it disrupts mitochondrial function and inhibits cellular respiration at concentrations as low as 50 ppm.[24][25] In group 15, basicity decreases down the group (NH₃ > PH₃) as bond polarity diminishes with larger central atoms, reducing the availability of the lone pair for protonation.[20]- Key group 15 hydrides: NH₃ (ammonia), PH₃ (phosphine), AsH₃ (arsine), SbH₃ (stibine), BiH₃ (bismuthine).
Group 16 Hydrides
Hydrogen sulfide (H₂S), the simplest group 16 hydride, is a colorless, toxic gas with a rotten-egg odor, produced naturally as a volcanic gas from geothermal activity and anaerobic bacterial reduction of sulfate. It behaves as a weak diprotic acid in water (pK_{a1} = 7.0, pK_{a2} = 12.9), partially dissociating to HS⁻ and H₂S²⁻ due to the polar S–H bonds influenced by sulfur's electronegativity (2.58 vs. H's 2.20).[26] Heavier analogs like hydrogen selenide (H₂Se) and hydrogen telluride (H₂Te) follow a trend of increasing acidity down the group (H₂O < H₂S < H₂Se < H₂Te), with pK_{a1} values decreasing from 15.7 for H₂O to approximately 2.6 for H₂Te, as larger central atoms weaken the E–H bond (bond dissociation energies: 381 kJ/mol for H₂S, 347 kJ/mol for H₂Se, 276 kJ/mol for H₂Te) and stabilize the conjugate base through better charge delocalization.[27][28] This trend arises from decreasing bond polarity and increasing atomic size, enhancing proton release.[20]- Key group 16 hydrides: H₂O (water), H₂S (hydrogen sulfide), H₂Se (hydrogen selenide), H₂Te (hydrogen telluride), H₂Po (hydrogen polonide).
Group 17 Hydrides
The hydrogen halides (HF, HCl, HBr, HI) are linear diatomic molecules with highly polar H–X bonds, where bond polarity increases with halogen electronegativity (F: 3.98 > Cl: 3.16 > Br: 2.96 > I: 2.66), making HF the most polar. Bond strengths decrease down the group (H–F: 565 kJ/mol > H–Cl: 431 kJ/mol > H–Br: 366 kJ/mol > H–I: 299 kJ/mol) due to poorer orbital overlap with larger halogens, leading to increasing acidity (HF pK_a = 3.17 < HCl pK_a = -6.1 < HBr pK_a = -8.7 < HI pK_a = -9.3) as weaker bonds facilitate H⁺ dissociation and larger conjugate bases (X⁻) stabilize negative charge.[19] Hydrogen chloride (HCl) is commonly prepared in the laboratory by reacting sodium chloride with concentrated sulfuric acid: followed by heating to drive off HCl gas, a method yielding anhydrous HCl for use in synthesis and analysis.[29] Overall, in non-metal hydrides, acidity trends correlate with decreasing H–E bond strength and polarity down each group, driven by atomic size and electronegativity differences.[20]- Key group 17 hydrides: HF (hydrogen fluoride), HCl (hydrogen chloride), HBr (hydrogen bromide), HI (hydrogen iodide), HAt (hydrogen astatide).
Oxides and peroxides
Metal oxides
Metal oxides are binary compounds consisting of metals from the s-, d-, and f-blocks combined with oxygen, generally exhibiting basic or amphoteric character due to the electropositive nature of metals. These oxides typically react with acids to form salts and water, distinguishing them from the acidic non-metal oxides that react with bases. Basicity increases down groups in the periodic table, with alkali and alkaline earth metal oxides being strongly basic, while some transition metal oxides are amphoteric. Structures vary from ionic lattices in alkali oxides to more covalent networks in transition metal oxides, influencing their stability and applications in construction, catalysis, and energy production.[30] Alkali metal oxides like sodium oxide (Na₂O) and potassium oxide (K₂O) are white, hygroscopic solids that form by direct combination of the metals with oxygen, often during combustion in air. The formation reaction for sodium oxide is: These oxides are highly basic, reacting vigorously with water to produce strong bases such as NaOH and KOH, and with acids to form salts. Alkaline earth metal oxides, such as magnesium oxide (MgO) and calcium oxide (CaO), are also basic and refractory. MgO forms via: CaO, known as quicklime, is produced industrially by calcining limestone and undergoes the exothermic slaking reaction with water: This process generates slaked lime, essential for mortar and cement production where CaO reacts with silicates to form binding calcium silicates.[31][32][33] Transition metal oxides display diverse colors and properties; for example, iron(III) oxide (Fe₂O₃), or hematite, is a red mineral that forms rust through atmospheric oxidation: Copper(II) oxide (CuO) is a black, basic solid used in ceramics and as a catalyst precursor. Titanium dioxide (TiO₂) exists in anatase and rutile polymorphs, both white powders serving as opaque pigments in paints due to high refractive index and UV absorption; anatase is particularly noted for photocatalytic activity in water splitting and pollutant degradation under UV light. Lanthanide and actinide oxides include uranium dioxide (UO₂), a black ceramic used as nuclear fuel in reactors for its high density and fissionability, and thorium dioxide (ThO₂), valued for its exceptionally high melting point of 3390 °C in refractory applications. Some metal oxides, like zinc oxide (ZnO), are amphoteric, dissolving in acids as: while also reacting with bases.[34][35][36][37][38][39][40]Non-metal oxides
Non-metal oxides are binary compounds consisting of a non-metal element bonded to oxygen, typically exhibiting acidic properties when reacting with water or bases, in contrast to the basic nature of metal oxides that neutralize acids. These compounds are often volatile gases or low-melting solids at room temperature and play crucial roles in environmental processes, such as atmospheric chemistry and the sulfur cycle, as well as in industrial applications and biological signaling. Their acidity arises from the high electronegativity of non-metals, leading to polar bonds that facilitate proton donation upon hydrolysis.[41] Carbon forms two primary oxides: carbon monoxide (CO) and carbon dioxide (CO₂). Carbon monoxide is a colorless, odorless, and highly toxic gas that binds to hemoglobin with greater affinity than oxygen, inhibiting oxygen transport in the blood and causing asphyxiation at concentrations as low as 0.1%. In coordination chemistry, CO acts as a strong π-acceptor ligand, forming stable metal carbonyl complexes like Ni(CO)₄ through σ-donation from its carbon lone pair and π-backbonding from metal d-orbitals, which is pivotal in organometallic catalysis.[42][43] Carbon dioxide, a colorless gas, is the primary greenhouse gas responsible for trapping infrared radiation and contributing to global climate change, with atmospheric concentrations rising due to fossil fuel combustion. It is essential in biology as the substrate for photosynthesis, where plants fix CO₂ into organic carbohydrates via the Calvin cycle, producing biomass and oxygen.[42][44] Nitrogen oxides include nitric oxide (NO), nitrogen dioxide (NO₂), and nitrous oxide (N₂O), each with distinct environmental and physiological roles. Nitric oxide is a diatomic free radical serving as a key signaling molecule in mammals, mediating vasodilation by activating guanylate cyclase in smooth muscle cells, and facilitating neurotransmission and immune responses. Nitrogen dioxide appears as a reddish-brown gas at room temperature and acts as a precursor to acid rain by oxidizing in the atmosphere to form nitric acid upon reaction with water vapor. This oxidation proceeds via the reaction . Nitrous oxide, a linear molecule, is widely used as an inhalational anesthetic in dentistry and surgery due to its rapid onset and minimal respiratory depression, often mixed with oxygen for safety.[45][46][47][48] Sulfur oxides, sulfur dioxide (SO₂) and sulfur trioxide (SO₃), are major atmospheric pollutants derived from natural and anthropogenic sources. Sulfur dioxide is a colorless gas emitted primarily from volcanic eruptions and fossil fuel combustion, contributing to respiratory issues and the formation of sulfate aerosols that affect climate. It undergoes catalytic oxidation in the atmosphere: , and is produced by the combustion of sulfur: . Sulfur trioxide, a colorless liquid or solid, is highly reactive and serves as a potent dehydrating agent in chemical synthesis, rapidly absorbing water to form sulfuric acid and used in sulfonation reactions.[49][50][51] Phosphorus forms two key oxides: phosphorus(III) oxide (P₄O₆), a white waxy solid with a tetrahedral P₄ core bridged by oxygen atoms, and phosphorus(V) oxide (P₄O₁₀), also a white solid but with a more open tetrahedral structure featuring six P=O double bonds. Phosphorus pentoxide (P₄O₁₀) is an exceptionally strong drying agent, avidly reacting with water to produce phosphoric acid: This exothermic reaction underscores its use in desiccators and organic dehydration processes.[52] Silicon dioxide (SiO₂), commonly known as silica, is a non-metal oxide forming an extended three-dimensional covalent network of SiO₄ tetrahedra sharing corners. It appears as a white crystalline solid or amorphous powder, with a high melting point of 1710 °C, and exhibits weakly acidic properties, reacting with strong bases at elevated temperatures to form silicates, such as SiO₂ + 2 NaOH → Na₂SiO₃ + H₂O. SiO₂ is abundant in nature as quartz and sand, and is essential in the production of glass, ceramics, silicon chips for electronics, and as an abrasive or filler material.[53] A notable trend among non-metal oxides is the increase in acidity with the oxidation state of the non-metal atom; for instance, SO₂ hydrolyzes to form the weaker sulfurous acid (H₂SO₃), while SO₃ yields the stronger sulfuric acid (H₂SO₄), reflecting stronger O-H bonds and greater proton release in higher oxidation states.[47]Peroxides
Peroxides contain the peroxide ion (O₂²⁻) or the -O-O- peroxide linkage, characterized by a weak O-O bond (bond energy ~146 kJ/mol) that makes them strong oxidizing agents, often more reactive than corresponding oxides. Hydrogen peroxide (H₂O₂) is the simplest peroxide, a colorless liquid miscible with water, with a boiling point of 150.2 °C and density of 1.45 g/cm³ at 20 °C. It decomposes exothermically to water and oxygen, catalyzed by transition metals, light, or enzymes like catalase: H₂O₂ is widely used as a disinfectant, antiseptic (e.g., in wound care at 3% concentration), bleaching agent in textiles and hair, and in environmental remediation for oxidizing pollutants; industrially, higher concentrations (up to 70%) serve as rocket propellants and in chemical synthesis.[54] Alkali and alkaline earth metal peroxides include sodium peroxide (Na₂O₂), a pale yellow granular solid that reacts vigorously with water to generate H₂O₂ and sodium hydroxide: Na₂O₂ is employed as an oxidizing agent in organic chemistry, for bleaching wood pulp, and in air purification by reacting with CO₂ to produce O₂. Barium peroxide (BaO₂), a white powder, was historically significant for producing H₂O₂ via acid treatment and is used in pyrotechnics for green flares due to its reaction with magnesium. These peroxides are hazardous, capable of explosive reactions with reducing agents or upon heating, requiring careful storage.[55]Hydroxides and oxoacids
Metal hydroxides
Metal hydroxides are compounds formed by the reaction of metals with water or bases, typically exhibiting basic properties due to the release of hydroxide ions in solution. They play a crucial role in precipitation reactions, where insoluble hydroxides form from soluble metal salts upon addition of a base, aiding in the removal of metal ions from aqueous environments. Solubility varies significantly across the periodic table, with many metal hydroxides being sparingly soluble, leading to their use in analytical chemistry for selective precipitation based on pH and ion concentration. Amphoterism is observed in some, particularly those of post-transition metals like aluminum, allowing them to act as either acids or bases depending on the surrounding pH. Group 1 and Group 2 metal hydroxides are generally more soluble and strongly basic compared to those of transition metals. Sodium hydroxide (NaOH), also known as caustic soda, is highly soluble and produced industrially via the chlor-alkali electrolysis of sodium chloride brine, where an electric current decomposes the solution to yield NaOH, chlorine gas, and hydrogen. Calcium hydroxide (Ca(OH)₂), or slaked lime, is sparingly soluble in water (approximately 1 g per 630 mL at 25°C) and is obtained by reacting calcium oxide with water; it is widely used in construction as a component of mortar due to its binding properties when mixed with sand. Solubility in Group 2 hydroxides increases down the group, with magnesium hydroxide (Mg(OH)₂) having low solubility and barium hydroxide (Ba(OH)₂) being notably more soluble, a trend attributed to decreasing lattice energy and increasing ionic size of the metal cation, which reduces ion pairing in solution. This variation influences their basic strength and applications, such as in pH adjustment. Transition metal hydroxides often form gelatinous precipitates and exhibit distinct colors indicative of their oxidation states. Ferric hydroxide (Fe(OH)₃) precipitates as a rusty-brown, insoluble gel from ferric salts in basic conditions, commonly observed in rust formation where iron oxidation leads to this compound. Aluminum hydroxide (Al(OH)₃) is amphoteric, dissolving in both acids and strong bases; in alkaline media, it reacts as follows: This property allows its separation from other metals in qualitative analysis. The formation of Mg(OH)₂ occurs via hydration of magnesium oxide: Similarly, aluminum metal reacts with water under certain conditions to produce Al(OH)₃ and hydrogen gas: In water treatment, Al(OH)₃ serves as an effective flocculant, aggregating suspended particles for easier removal during coagulation processes.Oxoacids and oxoanions
Oxoacids, also known as oxyacids, are inorganic acids that contain oxygen atoms bonded to a central non-metal atom, along with hydrogen and often additional oxygen or hydroxy groups; their conjugate bases are oxoanions, which play crucial roles in aqueous chemistry, buffering, and industrial processes.[56] These compounds exhibit varying acid strengths determined by factors such as the central atom's electronegativity, the number of oxygen atoms, and bond resonance stabilization in the anion, with nomenclature following systematic rules: the suffix "-ic acid" for the highest oxidation state of the central atom (e.g., sulfuric acid for S(VI)), "-ous acid" for lower states (e.g., sulfurous acid for S(IV)), and prefixes like "hypo-" or "per-" for extremes.[57] Stability often decreases with lower oxidation states due to disproportionation tendencies, while oxoanions like sulfate (SO₄²⁻) benefit from delocalized electrons enhancing thermodynamic stability.[58] Sulfur oxoacids include sulfuric acid (H₂SO₄), a strong diprotic acid with pKₐ values of -3 and 1.99, making it highly corrosive and widely used in batteries and chemical synthesis; it is produced industrially via the contact process, where sulfur trioxide reacts with water.[58] The reaction is , occurring in concentrated acid to avoid mist formation.[59] Sulfurous acid (H₂SO₃), in contrast, is a weak diprotic acid (pKₐ 1.85 and 7.19) that is unstable and cannot be isolated in pure form, existing primarily in aqueous solutions of SO₂ where it decomposes to water and sulfur dioxide.[60] Its conjugate base, sulfite (SO₃²⁻), is used in preservatives but prone to oxidation to sulfate.[61] Nitrogen oxoacids feature nitric acid (HNO₃), a strong monoprotic acid (pKₐ -1.3) renowned for its strong oxidizing properties, enabling reactions like metal dissolution and nitro compound formation; it is manufactured through the Ostwald process, involving ammonia oxidation to NO, then to NO₂, and absorption in water.[62] The nitrate ion (NO₃⁻) exhibits +5 oxidation state for nitrogen and resonance stabilization across three equivalent N-O bonds, delocalizing the negative charge and contributing to its stability in salts like fertilizers.[63] Nitrous acid (HNO₂), a weak acid (pKₐ 3.35), is unstable and decomposes to nitric oxide and nitric acid, serving as a reagent in diazotization but existing mainly in equilibrium with nitrite ions (NO₂⁻).[64] Phosphorus oxoacids encompass phosphoric acid (H₃PO₄), a tribasic acid with pKₐ values of 2.14, 7.20, and 12.67, allowing stepwise ionization and formation of phosphates essential for fertilizers and detergents; its production involves wet-process extraction from phosphate rock, yielding millions of tons annually for agriculture.[56] The phosphate ion (PO₄³⁻) features phosphorus in the +5 oxidation state with tetrahedral geometry. Phosphorous acid (H₃PO₃), a diprotic reducing agent due to its P-H bond (pKₐ 1.3 and 6.7), readily oxidizes to phosphoric acid, finding use in water treatment and organic synthesis.[65] Halogen oxoacids, particularly those of chlorine, demonstrate a clear trend in acid strength increasing with the number of oxygen atoms: hypochlorous acid (HClO, pKₐ 7.5) < chlorous acid (HClO₂, pKₐ 2.0) < chloric acid (HClO₃, pKₐ -2.7) < perchloric acid (HClO₄, pKₐ -10), attributed to enhanced inductive withdrawal of electron density from the O-H bond by additional oxygens and greater resonance stabilization in the anions.[57] Perchloric acid is the strongest simple acid known, with chlorine in +7 oxidation state, used in analytical chemistry for its non-complexing properties.[66] Hypochlorous acid, the weakest, acts as a disinfectant by oxidizing microbial proteins, generated in situ from chlorine bleach.[67] The corresponding oxoanions, such as perchlorate (ClO₄⁻), are stable and environmentally persistent.[68]Halides
Metal halides
Metal halides are binary compounds formed between metals and halogens (fluorine, chlorine, bromine, or iodine), exhibiting a spectrum of bonding character from predominantly ionic in alkali and alkaline earth metal halides to more covalent in transition metal halides, influenced by the metal's electronegativity, charge, and size relative to the halide ion.[69] These compounds are typically synthesized by direct combination of the metal with the halogen gas, as exemplified by the reaction of sodium with chlorine:This method yields stable ionic lattices for many metal halides, though high temperatures or specialized conditions may be required for reactive metals.[70] Solubility in water follows the "like dissolves like" principle, where polar ionic compounds like sodium chloride dissolve readily due to ion-dipole interactions, while less polar or more covalent halides like silver chloride remain insoluble owing to weak lattice energy disruption.[71][72] Alkali metal halides, such as those of sodium and potassium, are highly ionic with rock salt (NaCl-type) structures and excellent solubility in water, making them essential in industrial and dietary applications. Sodium chloride (NaCl), commonly known as table salt, adopts the rock salt cubic lattice and is primarily extracted from seawater through solar evaporation processes that yield over 2% NaCl by weight from influent brine.[73][74] Potassium fluoride (KF) serves as a flux in metallurgy and glass etching due to its ability to lower melting points and facilitate reactions.[75] Alkaline earth metal halides display similar ionic character but with higher lattice energies due to divalent cations, leading to varied solubilities; fluorides are notably less soluble than chlorides. Calcium chloride (CaCl₂) is highly hygroscopic, absorbing moisture at relative humidities above 42%, and is widely used as an ice-melting agent because it depresses the freezing point of water and generates exothermic heat upon dissolution.[76][77] Magnesium fluoride (MgF₂) exhibits low solubility in water, governed by its high lattice energy and the small, highly charged Mg²⁺ ion, rendering it useful in optical coatings rather than aqueous processes.[78] Transition metal halides often show increased covalent character and reactivity, with many undergoing hydrolysis in aqueous environments. Ferric chloride (FeCl₃) acts as a strong Lewis acid in coordination chemistry and is employed in water treatment for coagulation and phosphorus removal, but it hydrolyzes readily:
This reaction produces a reddish-brown precipitate of iron(III) hydroxide, aiding in flocculation.[79] Silver chloride (AgCl) is characteristically insoluble in water (Ksp ≈ 1.8 × 10⁻¹⁰), forming a white curdy precipitate, and has been pivotal in black-and-white photography where light reduces AgCl to metallic silver, creating latent images.[80][81]
Interhalogen compounds
Interhalogen compounds are molecules composed of two or more different halogen atoms, typically following the general formula XY, where X is the less electronegative and larger halogen serving as the central atom, and Y is the more electronegative halogen (usually fluorine), with equal to 1, 3, 5, or 7. These compounds exhibit polar bonds due to the electronegativity differences between the halogens, and the central atom is always the heavier, less electronegative one, such as iodine in larger structures like IF, because fluorine cannot expand its octet beyond two atoms owing to its small size and high electronegativity. This trend arises from the ability of larger halogens to accommodate more ligands through d-orbital involvement, enabling higher coordination numbers.[82] Diatomic interhalogens, such as IF and BrCl, are simple linear molecules with polar covalent bonds, where the bond polarity increases with the electronegativity difference, making them more reactive than the corresponding diatomic halogens. Examples of the XY type include ClF, BrF, and IF, which adopt a T-shaped geometry according to VSEPR theory, resulting from three bonding pairs and two lone pairs on the central atom, leading to distorted structures and enhanced reactivity. Larger interhalogens, like IF with its square pyramidal shape (one lone pair and five bonding pairs) and IF with a pentagonal bipyramidal arrangement (seven bonding pairs, no lone pairs), demonstrate the capacity for higher coordination, particularly with iodine as the central atom.[82] These compounds are prepared by direct combination of the elements, as exemplified by the reaction , often under controlled conditions to manage their exothermic nature. They undergo hydrolysis to yield a halogen acid and an oxyacid, such as , highlighting their tendency to disproportionate and release fluoride ions. Interhalogens are potent oxidizing agents, with oxidizing power generally decreasing down the group for the central halogen, though they surpass pure halogens in reactivity due to weaker X-Y bonds compared to X-X bonds. Their strong oxidizing nature makes them valuable as fluorinating agents in organic synthesis and for preparing metal fluorides, though their handling requires caution due to explosive tendencies with water or organics.[82][83]Chalcogenides
Sulfides
Sulfides are a class of binary inorganic compounds formed by sulfur with metals or non-metals, often exhibiting diverse structures and properties such as semiconducting behavior and occurrence as natural minerals. These compounds play crucial roles in geology, materials science, and industry, with many serving as ores for metal extraction or as functional materials due to their electronic properties. For instance, transition metal sulfides frequently display semiconducting characteristics, enabling applications in photovoltaics and optoelectronics, while their layered or cubic crystal structures influence mechanical and thermal behaviors.[84] Metal sulfides, particularly those of iron, zinc, lead, and group 12 elements, are abundant in nature and valued for their mineral forms and industrial uses. Iron(II) sulfide (FeS), known as pyrrhotite, is a nonstoichiometric mineral with the approximate formula Fe(1-x)S, where x ranges from 0 to 0.125, exhibiting magnetic properties due to iron vacancies in its hexagonal structure; it forms via the direct combination of iron and sulfur, as in the reaction Fe + S → FeS.[85][86] Zinc sulfide (ZnS), occurring as the cubic sphalerite mineral, is a wide-bandgap semiconductor (approximately 3.6 eV) used in phosphors for its luminescence under UV excitation, where it emits green light after energy absorption.[87][88] Lead sulfide (PbS), the primary ore galena, features a cubic rock-salt structure and narrow bandgap (about 0.41 eV), making it suitable for infrared detectors, with galena crystals often exhibiting metallic luster and high density (7.4-7.6 g/cm³).[89][90] Cadmium sulfide (CdS), a group 12 sulfide, appears as a yellow pigment with high opacity and lightfastness, employed in paints and coatings due to its thermal stability and chemical resistance.[91] These sulfides are typically processed by roasting to convert them to oxides; for example, zinc extraction involves 2ZnS + 3O2 → 2ZnO + 2SO2, producing zinc oxide for further reduction.[92] Certain metal sulfides exhibit distinctive crystal structures that underpin their applications. Molybdenum disulfide (MoS2) adopts a layered hexagonal structure with weak van der Waals forces between S-Mo-S sheets, enabling its use as a dry lubricant similar to graphite, reducing friction in high-vacuum or high-temperature environments.[93] In contrast, sodium sulfide (Na2S) crystallizes in a cubic antifluorite structure (space group Fm-3m), facilitating its solubility in water and role as a reducing agent in chemical synthesis and ore flotation.[94] Non-metal sulfides, being binary compounds without metallic elements, often display molecular or covalent characteristics and include prototypical examples like hydrogen sulfide (H2S) and carbon disulfide (CS2). Hydrogen sulfide (H2S) is a colorless, toxic gas with a rotten-egg odor, serving as a precursor to metal sulfides through reactions with metal salts, and its salts (e.g., Na2S from H2S + 2NaOH → Na2S + 2H2O) are key in industrial processes like leather tanning.[95] Carbon disulfide (CS2), a volatile liquid, is an inorganic non-metal sulfide used in viscose rayon production, featuring a linear S=C=S structure with polar C=S bonds (bond energy ~552 kJ/mol), though its flammability and neurotoxicity limit handling.[96] These compounds highlight sulfur's ability to form stable binaries with lighter elements, contrasting with the ionic nature of many metal sulfides.[97]Selenides and tellurides
Selenides and tellurides are binary compounds formed between metals and the chalcogens selenium (Se) and tellurium (Te), exhibiting semiconductor properties that make them valuable in advanced materials applications. These compounds display increasing metallic character down the chalcogen group from sulfur to selenium to tellurium, resulting in narrower band gaps and enhanced electrical conductivity compared to analogous sulfides.[98] Unlike sulfides, which are more commonly extracted in mining operations as analogs, selenides and tellurides are prioritized for their tunable electronic properties in optoelectronics and energy conversion.[99] Selenides and tellurides can exhibit higher toxicity in certain forms due to increased bioavailability and reactivity of Se and Te, which can substitute for sulfur in biological systems and induce oxidative stress.[100] Metal selenides, such as cadmium selenide (CdSe), are II-VI semiconductors with a direct band gap of approximately 1.74 eV in bulk form, which can be tuned from 1.5 to 3 eV in quantum dot (QD) configurations through size-dependent quantum confinement effects.[101] CdSe QDs exhibit strong fluorescence and photostability, enabling applications in photovoltaics, where they serve as sensitizers in solar cells to enhance light absorption and charge separation, achieving power conversion efficiencies up to 5-7% in hybrid systems.[102] However, CdSe's toxicity arises from cadmium ion release, causing genotoxicity and oxidative damage in biological systems at low nanomolar concentrations (e.g., 50 nM).[103] Lead selenide (PbSe), another notable metal selenide, features a narrow band gap of 0.27 eV, making it ideal for mid-infrared detection up to 5 μm wavelengths due to its high responsivity (up to 10^3 V/W) and fast response times below 5 μs.[104] PbSe thin films are synthesized for uncooled infrared detectors in thermal imaging and gas sensing, with detectivity exceeding 10^9 Jones at room temperature.[105] Tellurides demonstrate even greater metallic character, with compounds like bismuth telluride (Bi₂Te₃) acting as a topological insulator and thermoelectric material with a band gap of 0.15 eV. Bi₂Te₃ exhibits a high figure of merit (ZT ≈ 1.0-1.2 at 300 K) due to its low thermal conductivity (≈1.2 W/m·K) and high electrical conductivity (≈10^5 S/m), enabling efficient heat-to-electricity conversion in Peltier coolers and power generators.[106] Nanostructuring further enhances ZT to 1.5-2.0 by reducing lattice thermal conductivity while preserving electronic transport.[107] Mercury telluride (HgTe) is a semimetal with a negative band gap of -0.3 eV, where the Γ₆ valence band inverts above the Γ₈ conduction band, leading to unique topological surface states and high electron mobility (>10^5 cm²/V·s).[108] This property supports applications in mid-infrared semiconductors and quantum well devices for high-speed photodetection.[109] Synthesis of metal selenides and tellurides often involves direct combination of elemental metals and chalcogens at elevated temperatures (500-1000°C) under inert atmospheres to form stable binary phases, as in the reaction M + Se → MSe (where M is the metal).[110] For instance, CdSe QDs are prepared via colloidal methods using organometallic precursors, yielding size-controlled particles with narrow emission spectra.[111] These compounds' photovoltaic and thermoelectric uses stem from their adjustable band gaps, which enable efficient charge carrier generation and transport, though toxicity from heavy metal components necessitates careful handling in device fabrication.[112]Pnictides
Nitrides
Binary nitrides are compounds formed between nitrogen and metals or metalloids, exhibiting a wide range of structures and properties due to nitrogen's high electronegativity and ability to form strong bonds. They are classified into ionic nitrides, primarily from groups 1 and 2, which feature layered or salt-like structures; interstitial nitrides from transition metals, where nitrogen atoms occupy octahedral voids in a metal lattice, imparting high hardness and refractoriness; and covalent network nitrides from groups 13 and 14, characterized by extended three-dimensional frameworks that confer exceptional mechanical strength. These materials are valued in ceramics for their thermal stability and in semiconductors for electronic properties, with applications spanning abrasives, coatings, and electrolytes.[113][114][115] Group 1 and 2 nitrides, such as lithium nitride (Li₃N) and magnesium nitride (Mg₃N₂), are ionic in nature and often synthesized by direct reaction of the metal with nitrogen gas. Lithium nitride adopts a layered structure with high ionic conductivity, making it suitable as a solid electrolyte in lithium-ion batteries. Magnesium nitride can be prepared via the reaction: This compound undergoes hydrolysis in water, releasing ammonia: These reactions highlight the reactivity of alkali and alkaline earth nitrides, limiting their use in moist environments but enabling applications in hydrogen storage and synthesis precursors.[116][117] Among metal nitrides, boron nitride (BN) exists in hexagonal and cubic forms; the hexagonal phase acts as a solid lubricant due to its graphite-like layered structure, while cubic BN is diamond-like in hardness, used in cutting tools and abrasives. Aluminum nitride (AlN) is a covalent semiconductor with high thermal conductivity (up to 320 W/m·K) and electrical insulation, finding applications in heat sinks for power electronics and substrates for LEDs. Titanium nitride (TiN) forms interstitial structures with golden coatings that enhance wear resistance and corrosion protection, commonly applied in tool coatings and biomedical implants to improve durability.[118][119][120][121][122] Silicon nitride (Si₃N₄) exemplifies covalent network nitrides, featuring a beta-phase structure with strong Si-N bonds that yield high hardness (Vickers ~1600) and fracture toughness, positioning it as an abrasive in grinding wheels and a ceramic component in engines for its oxidation resistance up to 1400°C. Vanadium nitride (VN), an interstitial nitride, exhibits refractory properties with a melting point above 2300°C and metallic conductivity, used in steel alloying to boost strength and in coatings for high-temperature environments. These examples underscore the role of bond type in dictating nitride performance, from superhard ceramics to conductive refractories.[123][124]Phosphides and arsenides
Phosphides and arsenides are binary compounds formed between metals and the pnictogens phosphorus or arsenic, typically synthesized by direct combination of the elements at high temperatures. These materials exhibit diverse structures and properties, ranging from reactive ionic compounds to covalent semiconductors, and are notable for their applications in optoelectronics and pest control, though many pose significant health risks due to the release of toxic gases like phosphine (PH3) or arsine (AsH3). Preparation often involves heating the metal with elemental phosphorus or arsenic under inert conditions to prevent oxidation, as illustrated by the synthesis of calcium phosphide: This reaction occurs at elevated temperatures around 1000°C, yielding a grayish solid that is highly sensitive to moisture.[24] Calcium phosphide (Ca3P2) serves as a key example of an alkali earth phosphide, historically employed as a rodenticide because it hydrolyzes in the gastrointestinal tract to generate phosphine gas, which is highly toxic with a NIOSH IDLH of 50 ppm; human deaths reported from exposures as low as 8 ppm for 1-2 hours. The hydrolysis reaction is: Phosphine is a flammable, colorless gas with a garlic-like odor, contributing to the compound's extreme hazard.[24][25][125] In contrast to the hardness and thermal stability of nitrides, phosphides like Ca3P2 are far more reactive with water, limiting their use to controlled environments. Indium phosphide (InP) represents a prominent III-V semiconductor phosphide, valued for its direct bandgap of approximately 1.34 eV, which enables efficient light emission in the near-infrared to visible range. It is widely used as a substrate and active material in light-emitting diodes (LEDs), particularly in quantum dot-based devices for displays and lighting, offering a cadmium-free alternative with high quantum yields up to 97% in green emitters.[126] The compound's preparation typically involves metalorganic chemical vapor deposition, ensuring high purity for optoelectronic performance. Arsenides, such as gallium arsenide (GaAs), are cornerstone materials in semiconductor technology due to their superior electron mobility—over five times that of silicon—and direct bandgap of 1.42 eV, making them ideal for high-efficiency photovoltaic devices. GaAs solar cells achieve efficiencies exceeding 29% under concentrated sunlight, powering satellites and concentrator systems where silicon falls short.[127] These cells are grown via epitaxial methods like molecular beam epitaxy, but their production involves handling arsenic, which combusts readily: This oxidation underscores the need for inert atmospheres, as arsenic trioxide is a potent poison.[128] Nickel arsenide (NiAs) exemplifies a transition metal arsenide with a hexagonal crystal structure, known as the nickeline type, where nickel atoms occupy octahedral sites in a hexagonal close-packed arsenic lattice, resulting in metallic conductivity and applications in catalysis and magnetics. The structure features Ni-As bond lengths around 2.44 Å, promoting partial covalent character.[129] Heavier pnictides like phosphides and arsenides often form Zintl phases—electron-precise polyanions with discrete or polymeric [Pn]n units (Pn = P, As)—which stabilize intermetallic compounds and exhibit semiconducting behavior useful in thermoelectrics. Toxicity escalates down the pnictogen group, with arsenides posing greater risks than phosphides due to arsenic's bioaccumulation and carcinogenic effects, far exceeding the relative inertness of nitrides.[130][131]Carbides and borides
Carbides
Carbides are binary compounds formed between carbon and metals or metalloids, distinguished by their exceptional refractoriness, hardness, and chemical stability, which stem from strong carbon-metal bonds. These materials are broadly classified into three types: salt-like (ionic), covalent, and interstitial (metallic), each exhibiting unique structural and reactive properties that enable diverse industrial applications, particularly in high-temperature environments. Salt-like carbides typically involve electropositive metals and react vigorously with water, while covalent carbides feature directional bonding leading to semiconductor-like behavior, and interstitial carbides incorporate carbon atoms within a metallic lattice for enhanced toughness. This classification underpins their use in cutting tools and nuclear reactors, where thermal and mechanical resilience is paramount.[132][133] Salt-like carbides, also known as methanides, are ionic compounds formed by select electropositive metals such as beryllium (group 2) and aluminum (group 13) that hydrolyze to produce methane gas. Aluminum carbide (Al₄C₃) exemplifies this class, synthesized by direct combination of aluminum and carbon at high temperatures via the reaction: It readily hydrolyzes in water, yielding aluminum hydroxide and methane according to: This reactivity limits its practical use but highlights its role in specialized pyrotechnic or reducing applications. Beryllium carbide (Be₂C) shares similar ionic characteristics, decomposing upon hydrolysis to beryllium oxide and methane, and is noted for its high thermal stability up to approximately 2150°C before dissociation. Both compounds underscore the salt-like category's sensitivity to moisture, contrasting with more robust carbide types.[133][134][135][136] Covalent carbides feature discrete carbon networks or strong directional bonds, imparting semiconductor properties and extreme hardness. Silicon carbide (SiC), commercially known as carborundum, is a quintessential example, valued for its abrasive qualities in grinding and polishing due to its Mohs hardness approaching 9.5; it is produced industrially via the Acheson process and finds extensive use in high-temperature ceramics and electronics. Boron carbide (B₄C) similarly exhibits covalent bonding, renowned as a neutron absorber in nuclear applications owing to boron's high thermal neutron capture cross-section of 3837 barns, making it ideal for reactor control rods and shielding composites. These carbides' refractoriness, with high melting points such as ~2450°C for B₄C and sublimation above ~2700°C for SiC, enables their deployment in environments demanding wear resistance and radiation tolerance.[137][138][139][140] Interstitial carbides, formed with transition metals, embed carbon atoms in octahedral voids of a close-packed metallic lattice, yielding metallic conductivity and superior toughness. Tungsten carbide (WC) is a prime representative, widely employed in drill bits and cutting tools for its exceptional hardness (Vickers ~2000) and wear resistance, often cemented with cobalt to form durable composites for machining alloys. Titanium carbide (TiC), another interstitial variant, serves as a key component in cermets—ceramic-metal hybrids—enhancing tool life in high-speed cutting operations through its high melting point (~3067°C) and thermal shock resistance. Overall, these carbides' refractoriness supports critical roles in cutting tools for industrial machining, where they withstand extreme conditions without degradation.[141][142][143][144]Borides
Borides are binary compounds formed between metals and boron, characterized by distinctive cluster-based structures that impart exceptional hardness and thermal stability. These materials often feature boron atoms arranged in polyhedral clusters or networks, such as planar hexagonal layers in diborides or octahedral units in higher borides, contributing to their covalent bonding and resistance to deformation.[145][146] Transition metal borides, particularly diborides like titanium diboride (TiB₂), exhibit high electrical conductivity and are utilized as ceramics in electrodes and cutting tools due to their hardness exceeding 30 GPa and melting point around 3225°C.[145][147] Similarly, zirconium diboride (ZrB₂) finds applications in aerospace components, such as hypersonic vehicle leading edges, owing to its melting point of approximately 3245°C and enhanced oxidation resistance up to 2200°C when composited with silicon carbide, forming protective oxide scales.[145][148] These diborides adopt a hexagonal AlB₂-type structure, where boron forms graphite-like layers alternating with metal atom sheets, enabling high thermal conductivity and mechanical strength.[145] Rare earth borides, such as lanthanum tetraboride (LaB₄), demonstrate unique electronic properties, including low work function surfaces that make them suitable as electron emitters in vacuum devices, with emission performance comparable to LaB₆ but at reduced operating temperatures to minimize material evaporation.[149] LaB₄ crystallizes in a tetragonal P4/mbm structure, featuring boron octahedra embedded in a three-dimensional network with lanthanum atoms coordinated to eighteen boron sites, yielding a hardness of about 30.5 GPa at ambient pressure.[146][150] Synthesis of these borides typically involves arc melting of elemental mixtures under inert atmosphere, as exemplified by the reaction Ti + 2B → TiB₂, which produces phase-pure powders via rapid solidification and minimizes impurities.[145] Their oxidation resistance stems from the formation of a boric oxide (B₂O₃) layer that passivates the surface at moderate temperatures, though volatility above 1000°C necessitates additives like MoSi₂ for sustained protection in ultra-high-temperature environments.[151] Hafnium diboride (HfB₂), with a melting point exceeding 3250°C, exemplifies this class's refractoriness, supporting applications in extreme thermal conditions akin to abrasives in carbides.[145][152]Coordination compounds
Simple coordination complexes
Simple coordination complexes represent a foundational class of inorganic compounds where a central metal ion is surrounded by ligands through coordinate bonds, forming discrete units known as coordination spheres. Alfred Werner's pioneering work in the early 20th century established the theory of coordination chemistry, distinguishing between primary (ionizable) valencies and secondary (non-ionizable) valencies that determine the coordination number and geometry. This framework explained the structures and reactivities of compounds like cobalt(III) ammines, for which Werner received the Nobel Prize in Chemistry in 1913. Werner's theory predicted octahedral geometry for coordination number 6, which is the most prevalent in transition metal complexes due to favorable ligand-metal interactions and electronic stability in d-block elements.[153][154] Octahedral complexes exemplify Werner's insights, with six ligands arranged at the vertices of an octahedron around the metal center. A classic example is hexaamminecobalt(III) chloride, [Co(NH₃)₆]Cl₃, a yellow crystalline solid where the Co(III) ion (d⁶ low-spin configuration) is coordinated to six ammonia molecules, rendering the complex kinetically inert to ligand substitution under ambient conditions. Another representative is hexaaquachromium(III) chloride, [Cr(H₂O)₆]Cl₃, a violet hydrate that maintains its octahedral structure in aqueous solution, as confirmed by X-ray diffraction studies showing stable Cr-O bonds at approximately 1.96 Å. These compounds highlight the role of coordination in stabilizing high oxidation states and influencing ionizability, with chloride counterions outside the coordination sphere.[155][156] Ligand exchange reactions in these complexes demonstrate dynamic behavior while preserving overall geometry. For instance, pentaamminechlorocobalt(III) chloride, [Co(NH₃)₅Cl]Cl₂, undergoes substitution with ammonia according to the equation: This process typically follows an associative (SN2-like) mechanism for Co(III) ammines, with the incoming ligand attacking the metal center to form a seven-coordinate intermediate, reflecting the inertness of the octahedral framework but sensitivity to nucleophilic conditions.[157] Tetrahedral coordination, with a coordination number of 4, occurs in simpler complexes where steric hindrance or weak-field ligands favor this geometry over square planar. The tetrachloronickelate(II) ion, [NiCl₄]²⁻, adopts tetrahedral symmetry and is paramagnetic, exhibiting two unpaired electrons in its high-spin d⁸ configuration, with a spin-only magnetic moment of 2.82 μ_B (experimental values ~3.5 μ_B due to orbital contributions), and electronic spectra showing transitions around 700 nm and 400 nm.[158] Similarly, tetrachlorocobaltate(II), [CoCl₄]²⁻, is a deep blue tetrahedral species, paramagnetic with three unpaired electrons (d⁷ high-spin), contrasting with octahedral aqua complexes of the same metals.[158] Geometrical isomerism arises in square-planar complexes with coordination number 4, particularly for second- and third-row transition metals. Diamminedichloroplatinum(II), [Pt(NH₃)₂Cl₂], exists as cis and trans isomers, where the cis form has adjacent ammonia and chloride ligands, while the trans has them opposite; this isomerism influences reactivity and solubility, with the cis isomer being more reactive toward nucleophiles due to steric and electronic factors. These examples underscore Werner's emphasis on spatial arrangements in coordination chemistry.[159]Organometallic-like inorganics
Organometallic-like inorganic compounds are those featuring direct metal-carbon sigma bonds without incorporating fully organic frameworks, distinguishing them from traditional organometallics by their emphasis on inorganic reactivity and applications. These compounds often exhibit high sensitivity to hydrolysis and air due to the polarized nature of the M-C sigma bond, where the metal acts as an electron acceptor from the carbon ligand. Representative examples include metal alkyls and metal cyanides, which play roles in industrial processes such as catalysis and extraction metallurgy. Metal alkyls, such as triethylaluminum (Al₂(C₂H₅)₆), exemplify these structures with their Al-C sigma bonds formed through sp³-hybridized carbon atoms. This dimeric compound is a colorless liquid that ignites spontaneously in moist air, rendering it pyrophoric, and reacts violently with water to produce flammable ethane gas and aluminum hydroxide via hydrolysis.[161][162] In industrial contexts, triethylaluminum serves as a cocatalyst in olefin polymerization processes, activating transition metal centers through alkyl group transfer while highlighting its inorganic utility in generating reactive intermediates. Cyanide salts, like potassium cyanide (KCN), represent another class with M-C sigma bonding in the cyanide ligand (M-CN), where the carbon atom directly coordinates to the metal. KCN is a white, deliquescent solid highly soluble in water (72 g/100 mL at 25°C), but its solutions release toxic hydrogen cyanide gas upon acidification, underscoring its reactivity.[163] The compound is acutely toxic, with a lethal oral dose of 200-300 mg for adults, inhibiting cellular respiration by binding to cytochrome oxidase and causing rapid onset of symptoms including convulsions and coma.[164] In gold extraction, KCN facilitates the dissolution of gold via cyanidation, as shown in the reaction: This process forms the stable dicyanoaurate(I) complex, enabling efficient recovery of gold from ores in alkaline conditions.[165] The sigma-bond character in these cyanides contributes to their role in forming coordination complexes, contrasting with the more labile alkyl bonds in hydrolysis-sensitive alkyls.[166]Other notable compounds
Ammonium and related salts
Ammonium salts constitute a class of inorganic compounds featuring the polyatomic ammonium cation (NH₄⁺), which imparts solubility in water and reactivity in various applications, particularly in agriculture and industry. These salts form through the neutralization of ammonia (NH₃) with acids, yielding stable crystalline solids that serve as sources of nitrogen for fertilizers or as reagents in chemical processes. Their environmental impact includes potential nitrogen leaching or volatilization, influencing soil management practices. Ammonium chloride (NH₄Cl) appears as an odorless white powder, highly soluble in water, and is primarily utilized as a soldering flux to clean metal surfaces by dissolving oxides and promoting solder adhesion during electronics assembly. It also finds application in the manufacture of dry cell batteries, where it acts as an electrolyte, and as a nitrogen fertilizer in saline-tolerant crops. Additionally, its use in pickling metals highlights its role in industrial etching processes.[167][168] Ammonium sulfate ((NH₄)₂SO₄) is a white, odorless crystalline salt that provides 21% nitrogen and 24% sulfur, making it an effective fertilizer for sulfur-deficient soils and crops requiring balanced nutrition, such as corn and wheat, to enhance protein formation and chlorophyll development. Its complete water solubility facilitates uniform distribution in irrigation systems or direct soil application, and it acidifies soil slightly, countering alkalinity without causing excessive volatilization losses compared to urea-based fertilizers. Over 90% of global production is directed toward agricultural use.[169][170] Ammonium nitrate (NH₄NO₃) is a colorless-to-white crystalline solid with high nitrogen content (approximately 34%), widely applied as a fertilizer to boost crop yields by delivering both ammonium and nitrate forms for rapid plant uptake, particularly in high-demand crops like rice and vegetables. However, its oxidizing properties render it a high explosive when sensitized, with pure material detonating at velocities of approximately 2500 m/s under confinement or heat, while mixtures like ANFO used in mining and quarrying achieve velocities up to 5000 m/s. The primary detonation reaction for pure ammonium nitrate is: This exothermic decomposition generates significant pressure, necessitating strict storage regulations to prevent accidental initiation. Following the 2020 Beirut port explosion, which involved the detonation of approximately 2750 tons of improperly stored ammonium nitrate and caused over 220 deaths, global regulations have been strengthened, including updates to the IMO's IMDG Code in 2025 for safer maritime transport and storage of AN-based fertilizers.[171][172][173] Hydrazinium salts, derived from protonated hydrazine, represent related polyatomic nitrogen cations with applications in energetic materials. Hydrazinium chloride (N₂H₅Cl), a white solid, acts as a precursor in the synthesis of hydrazine derivatives used in rocket propulsion systems, where it facilitates the production of hypergolic fuels that ignite spontaneously upon contact with oxidizers for spacecraft attitude control and launch vehicles. These salts offer stability during handling compared to free hydrazine while enabling high-energy output in aerospace contexts.[174] A characteristic property of ammonium-based salts in agricultural settings is the volatilization of the ammonium cation, which equilibrates in aqueous environments according to: This pH-dependent dissociation favors ammonia gas release above pH 7, leading to nitrogen losses of up to 20-30% from surface-applied fertilizers in calcareous soils, thereby reducing efficiency and contributing to atmospheric ammonia emissions. Incorporating salts into soil or using acidifying amendments shifts the equilibrium toward NH₄⁺ retention, optimizing nutrient availability.[175]Cyanides and related
Cyanides are a class of inorganic compounds containing the cyanide anion (CN⁻), which acts as a strong nucleophile and ligand in coordination chemistry due to its ambidentate nature, binding through carbon or nitrogen. These compounds are widely used in industrial processes but are highly toxic, primarily because the CN⁻ ion binds to the heme iron in cytochrome c oxidase, inhibiting cellular respiration and leading to rapid onset of symptoms including hypoxia and metabolic acidosis.[176] In coordination complexes, cyanide forms stable bonds with transition metals, contributing to their applications in pigments and catalysis.[177] Simple metal cyanides include sodium cyanide (NaCN), a white, water-soluble solid employed extensively in gold mining through the cyanidation process, where it leaches gold from low-grade ores by forming soluble gold-cyanide complexes.[178] Another example is copper(I) cyanide (CuCN), an insoluble cream-colored powder that precipitates in aqueous solutions and is used in electroplating and organic synthesis as a source of cyanide.[179] These simple cyanides hydrolyze in water to release HCN gas, amplifying their toxicity risk.[180] Complex cyanides feature the CN⁻ ligand coordinated to metal centers, forming polynuclear or mononuclear species with enhanced stability. The ferrocyanide ion ([Fe(CN)₆]⁴⁻) is a notable octahedral complex where iron(II) is surrounded by six CN⁻ groups, serving as the building block for Prussian blue (Fe₄[Fe(CN)₆]₃), a deep blue pigment historically used in paints and inks due to its intense color and lightfastness.[177] Similarly, the hexacyanocobaltate(III) ion ([Co(CN)₆]³⁻) forms stable salts like potassium hexacyanocobaltate(III), which exhibit magnetic properties and are applied in double metal cyanide catalysts for polymerization reactions.[181] The formation of ferrocyanide occurs via coordination of CN⁻ to Fe²⁺, as represented by the equation: This reaction proceeds under controlled conditions to avoid HCN evolution.[182] Related to cyanides are thiocyanate compounds, where sulfur replaces the oxygen in cyanate, yielding the SCN⁻ anion with pseudo-halide behavior. Thiocyanic acid (HSCN) is a colorless, unstable liquid that decomposes to HCN and other products, acting as a weak acid with pKa ≈ 0.9 and forming stable metal complexes.[183] Potassium thiocyanate (KSCN), a colorless, hygroscopic solid, is used in analytical chemistry, including colorimetric blood tests for cyanide exposure by measuring thiocyanate levels as a metabolite biomarker after enzymatic conversion of CN⁻ to SCN⁻ in vivo.[184] In nomenclature, inorganic cyanides are named as metal cyanides (e.g., NaCN as sodium cyanide), with complexes using systematic coordination names like hexacyanidoferrate(II). Isocyanides, featuring M–N≡C linkages (contrasting M–C≡N in cyanides), are less common in purely inorganic contexts but appear in some metal complexes; however, the focus here remains on C-bound cyanides prevalent in inorganic chemistry.[185]References
- /02:_Organometallic_Ligands/2.05:_Metal_Alkyls
